Skip to main content

Simulation of Progressive Failure in Composite Laminates

  • Conference paper
  • First Online:
Advanced Computational Methods in Science and Engineering

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 71))

Abstract

Fiber reinforced polymers are materials with excellent mechanical properties and relativelymuch design freedom.However, because complex failuremechanisms originating from the microstructure of the material may occur, realistic simulation of the failure process is still a challenge. Two alternative models for the modeling of failure in composite laminates are presented. The first is a continuum damage model that is supposed to cover all ply failure mechanisms. A limitation of the continuum approach with respect to the modeling of matrix failure is illustrated.Therefore, a discontinuousmodel has been developed for matrix failure specifically

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allix, O., Feissel, P., Thévenet, P.: A delay damage mesomodel of laminates under dynamic loading: basic aspects and identification issues. Computers and Structures 81(12), 1177–1191 (2003)

    Article  Google Scholar 

  2. Bazant, Z.P., Oh, B.: Crack band theory for fracture of concrete. Materials and Structures 16(3), 155–177 (1983)

    Google Scholar 

  3. Bazant, Z.P., Pijaudier-Cabot, G.: Measurement of characteristic length of non-local continuum. Journal of Engineering Mechanics 115(4), 755–767 (1989)

    Article  Google Scholar 

  4. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed mode bending apparatus. Composites Science and Technology 56(4), 439–449 (1996)

    Article  Google Scholar 

  5. de Borst, R., Mühlhaus, H.B.: Gradient-dependent plasticity: Formulation and algorithmic aspects. International Journal for Numerical Methods in Engineering 35(3), 521–539 (1992)

    Article  MATH  Google Scholar 

  6. Camanho, P.P., Dávila, C.G., de Moura, M.F.: Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  7. Camanho, P.P., Maimí, P., Dávila, C.G.: Prediction of size effects in notched laminates using continuum damage mechanics. Composites Science and Technology 67(13), 2715–2727 (2007)

    Article  Google Scholar 

  8. Caporale, A., Luciano, R., Sacco, E.: Micromechanical analysis of interfacial debonding in unidirectional fiber-reinforced composites. Computers and Structures 84(31), 2200–2211 (2006)

    Article  Google Scholar 

  9. Chamis, C.C., Sinclair, J.H.: Ten-deg off-axis test for shear properties in fiber composites. Experimental Mechanics 17(9), 339–346 (1977)

    Article  Google Scholar 

  10. Cox, B.N., Yang, Q.D.: In quest of virtual tests for structural composites. Science 314(5802), 1102–1107 (2006)

    Article  Google Scholar 

  11. Daniel, I.M., Ishai, O.: Engineering Mechanics of Composite Materials, Second edn. Oxford University Press, New York (2006)

    Google Scholar 

  12. Germain, N., Besson, J., Feyel, F.: Composite layered materials: Anisotropic nonlocal damage models. Computer Methods in Applied Mechanics and Engineering 196(41–44), 4272–4282 (2007)

    Article  Google Scholar 

  13. González, C., LLorca, J.: Multiscale modeling of fracture in fiber-reinforced composites. Acta Materialia 54(16), 4171–4181 (2006)

    Article  Google Scholar 

  14. Green, B.G., Wisnom, M.R., Hallett, S.R.: An experimental investigation into the tensile strength scaling of notched composites. Composites: Part A 38(3), 867–878 (2007)

    Article  Google Scholar 

  15. Gutiérrez, M.A.: Energy release control for numerical simulations of failure in quasi-brittle solids. Communications in Numerical Methods in Engineering 20(1), 19–29 (2004)

    Article  MATH  Google Scholar 

  16. Hallett, S.R., Wisnom, M.R.: Experimental investigation of progressive damage and the effect of layup in notched tensile tests. Journal of Composite Materials 40(2), 119–141 (2006)

    Article  Google Scholar 

  17. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 193(33–35), 3523–3540 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hashin, Z.: Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics 47, 329–334 (1980)

    Article  Google Scholar 

  19. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials 7, 448–464 (1973)

    Article  Google Scholar 

  20. Jiang, W.G., Hallett, S.R., Green, B.G., Wisnom, M.R.: A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. International Journal for Numerical Methods in Engineering 69(9), 1982–1995 (2007)

    Article  Google Scholar 

  21. Ladevèze, P.: A damage computational approach for composites: Basic aspects and micromechanical relations. Computational Mechanics 17(1–2), 142–150 (1995)

    Article  MATH  Google Scholar 

  22. Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Composites: Part A 38(11), 2333–2341 (2007)

    Article  Google Scholar 

  23. Laurin, F., Carrère, N., Maire, J.F.: A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models. Composites: Part A 38(1), 198–209 (2007)

    Article  Google Scholar 

  24. Laš, V., Zemčik, R.: Progressive damage of unidirectional composite panels. Journal of Composite Materials 42(1), 25–44 (2008)

    Google Scholar 

  25. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  26. Maimi, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: Part I – Constitutive model. Mechanics of Materials 39(10), 897–908 (2007)

    Article  Google Scholar 

  27. Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: Part II – Computational implementation and validation. Mechanics of Materials 39(10), 909–919 (2007)

    Article  Google Scholar 

  28. Matzenmiller, A., Lubliner, J., Taylor, R.L.: A constitutive model for anisotropic damage in fiber-composites. Mechanics of Materials 20(2), 125–152 (1995)

    Article  Google Scholar 

  29. van der Meer, F.P., Sluys, L.J.: Continuum models for the analysis of progressive failure in composite laminates. Journal of Composite Materials (accepted for publication)

    Google Scholar 

  30. Mergheim, J., Kuhl, E., Steinmann, P.: A finite element method for the computational modelling of cohesive cracks. International Journal for Numerical Methods in Engineering 63(2), 276–289 (2005)

    Article  MATH  Google Scholar 

  31. Mi, Y., Crisfield, A., Hellweg, H.B., Davies, G.A.O.: Progressive delamination using interface elements. Journal of Composite Materials 32(14), 1246–1272 (1998)

    Google Scholar 

  32. Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics 69(7), 813–833 (2002)

    Article  Google Scholar 

  33. Moonen, P., Sluys, L.J., Carmeliet, J.: Modeling the hygro-mechanical response of quasibrittle materials. Philosophical Magazine (submitted)

    Google Scholar 

  34. Oliver, J.: On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations. International Journal of Solids and Structures 37(48–50), 7207–7229 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pierron, F., Green, B., Wisnom, M.R., Hallett, S.R.: Full-field assessment of the damage process of laminated composite open-hole tensile specimens. Part II: Experimental results. Composites: Part A 38(11), 2321–2332 (2007)

    Article  Google Scholar 

  36. Pinho, S.T., Robinson, P., Iannucci, L.: Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part I: Development. Composites: Part A 37(1), 63–73 (2006)

    Article  Google Scholar 

  37. Pinho, S.T., Robinson, P., Iannucci, L.: Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation. Composites: Part A 37(5), 766–777 (2006)

    Article  Google Scholar 

  38. Remmers, J.J.C.: Discontinuities in materials and structures. Ph.D. thesis, Delft University of Technology (2006)

    Google Scholar 

  39. Remmers, J.J.C., Wells, G.N., de Borst, R.: A solid-like shell element allowing for arbitrary delaminations. International Journal for Numerical Methods in Engineering 58, 2013–2040 (2003)

    Article  MATH  Google Scholar 

  40. Schellekens, J.C.J., de Borst, R.: On the numerical integration of interface elements. International Journal for Numerical Methods in Engineering 36(1), 43–66 (1993)

    Article  MATH  Google Scholar 

  41. Schellekens, J.C.J., de Borst, R.: Free edge delamination in carbon-epoxy laminates: a novel numerical/experimental approach. Composite Structures 28(4), 357–373 (1994)

    Article  Google Scholar 

  42. Sluys, L.J.: Wave propagation, localisation and dispersion in softening solids. Ph.D. thesis, Delft University of Technology (1992)

    Google Scholar 

  43. Song, J.H., Areias, P.M.A., Belytschko, T.: A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering 67(6), 868–893 (2006)

    Article  MATH  Google Scholar 

  44. Spearing, S.M., Beaumont, P.W.R.: Fatigue damage mechanics of composite materials. I: Experimental measurement of damage and post-fatigue properties. Composites Science and Technology 44(2), 159–168 (1992)

    Article  Google Scholar 

  45. Turon, A., Camanho, P.P., Costa, J., Dávila, C.G.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mechanics of Materials 38(11), 1072–1089 (2006)

    Article  Google Scholar 

  46. Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics 74(10), 1665–1682 (2007)

    Article  Google Scholar 

  47. Van Paepegem, W., De Baere, I., Degrieck, J.: Modelling the nonlinear shear stress–strain response of glass fibre-reinforced composites. Part I: Experimental results. Composites Science and Technology 66(10), 1455–1464 (2006)

    Article  Google Scholar 

  48. Van Paepegem, W., De Baere, I., Degrieck, J.: Modelling the nonlinear shear stress-strain response of glass fibre-reinforced composites. Part II: Model development and finite element simulations. Composites Science and Technology 66(10), 1465–1478 (2006)

    Article  Google Scholar 

  49. Wang, W.M., Sluys, L.J., de Borst, R.: Viscoplasticity for instabilities due to strain softening and strain-rate softening. International Journal for Numerical Methods in Engineering 40(20), 3839–3864 (1997)

    Article  MATH  Google Scholar 

  50. Wells, G.N., de Borst, R., Sluys, L.J.: A consistent geometrically non-linear approach for delamination. International Journal for Numerical Methods in Engineering 54, 1333–1355 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  51. Wells, G.N., Sluys, L.J.: A new method for modelling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering 50(12), 2667–2682 (2001)

    Article  MATH  Google Scholar 

  52. Wisnom, M.R., Chang, F.K.: Modelling of splitting and delamination in notched cross-ply laminates. Composites Science and Technology 60(15), 2849–2856 (2000)

    Article  Google Scholar 

  53. Yang, Q.D., Cox, B.N.: Cohesive models for damage evolution in laminated composites. International Journal of Fracture 133(2), 107–137 (2005)

    Article  Google Scholar 

  54. Zuo, Q.H., Addessio, F.L., Dienes, J.K., Lewis, M.W.: A rate-dependent damage model for brittle materials based on the dominant crack. International Journal of Solids and Structures 43(11–12), 3350–3380 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. van der Meer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Meer, F.P., Sluys, L.J. (2009). Simulation of Progressive Failure in Composite Laminates. In: Koren, B., Vuik, K. (eds) Advanced Computational Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03344-5_12

Download citation

Publish with us

Policies and ethics