Skip to main content

Much Ado about Zero

  • Chapter
Efficient Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5760))

Abstract

Zero separation bounds provide a lower bound on the absolute value of an arithmetic expression, unless the value is zero. Such separation bounds are used for verified identification of zero in sign computations with real algebraic numbers, especially with number types that record the computation history of a numerical value using expression dags. We summarize results on separation bounds and their use for adaptive sign computation with real algebraic numbers based on expression dags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blömer, J.: A Probabilistic Zero-Test for Expressions Involving Roots of Rational Numbers. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 151–162. Springer, Heidelberg (1998)

    Google Scholar 

  2. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient Exact Geometric Computation Made Easy. In: 15th ACM Symposium on Computational Geometry, pp. 341–350. ACM, New York (1999)

    Google Scholar 

  3. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals. Algorithmica 27(1), 87–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A Separation Bound for Real Algebraic Expressions. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 254–265. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Burnikel, C., Könnemann, J., Mehlhorn, K., Näher, S., Schirra, S., Uhrig, C.: Exact Geometric Computation in LEDA. In: 11th ACM Symposium on Computational Geometry, pp. C18–C19. ACM, New York (1995)

    Google Scholar 

  6. Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  7. Fabri, A., Pion, S.: A Generic Lazy Evaluation Scheme for Exact Geometric Computations. In: 2nd Library-Centric Software Design, pp. 75–84. ACM, New York (2006)

    Google Scholar 

  8. Fortune, S., Van Wyk, C.J.: Efficient Exact Arithmetic for Computational Geometry. In: 9th ACM Symposium on Computational Geometry, pp. 163–172. ACM, New York (1993)

    Google Scholar 

  9. Funke, S., Mehlhorn, K.: Look: A Lazy Object-Oriented Kernel Design for Geometric Computation. Computational Geometry: Theory and Applications 22(1-3), 99–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A Core Library for Robust Numeric and Geometric Computation. In: 15th ACM Symposium on Computational Geometry, pp. 351–359. ACM, New York (1999)

    Google Scholar 

  11. Karasick, M., Lieber, D., Nackman, L.R.: Efficient Delaunay Triangulation Using Rational Arithmetic. ACM Trans. on Graphics 10, 71–91 (1991)

    Article  Google Scholar 

  12. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.: Classroom Examples of Robustness Problems in Geometric Computations. Computational Geometry: Theory and Applications 40(1), 61–78 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C., Yap, C.: A New Constructive Root Bound for Algebraic Expressions. In: 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 496–505 (2001)

    Google Scholar 

  14. Mehlhorn, K., Näher, S.: The Implementation of Geometric Algorithms. In: Pehrson, B., Simon, I. (eds.) IFIP 13th World Computer Congress, pp. 223–231. North-Holland, Amsterdam (1994)

    Google Scholar 

  15. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Mehlhorn, K., Schirra, S.: Generalized and Improved Constructive Separation Bound for Real Algebraic Expressions. Research Report MPI-I-2000-1-004, Max-Planck-Institut für Informatik (2000)

    Google Scholar 

  17. Mehlhorn, K., Schirra, S.: Exact Computation with leda real - Theory and Geometric Applications. In: Alefeld, G., Rohn, J., Rump, S.M., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods, pp. 163–172. Springer, Wien (2001)

    Chapter  Google Scholar 

  18. Mignotte, M.: Identification of Algebraic Numbers. J. Algorithms 3(3), 197–204 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mignotte, M.: Mathematics for Computer Algebra. Springer, New York (1992)

    Book  MATH  Google Scholar 

  20. Monagan, M.B., Gonnet, G.H.: Signature Functions for Algebraic Numbers. In: International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 291–296. ACM, New York (1994)

    Chapter  Google Scholar 

  21. Pion, S., Yap, C.: Constructive Root Bound Method for k-ary Rational Input Numbers. In: 18th ACM Symposium on Computational Geometry, pp. 256–263. ACM, New York (2003)

    Google Scholar 

  22. Scheinerman, E.R.: When Close Enough is Close Enough. American Mathematical Monthly 107(6), 489–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schmitt, S.: Common Subexpression Search in leda reals. Report ECG-TR-243105-01, Effective Computational Geometry for Curves and Surfaces (2003)

    Google Scholar 

  24. Schmitt, S.: Common Subexpression Search in leda reals – a Study of the Diamond Operator. Report ECG-TR-243107-01, Effective Computational Geometry for Curves and Surfaces (2004)

    Google Scholar 

  25. Schmitt, S.: Improved Separation Bounds for the Diamond Operator. Report ECG-TR-363108-01, Effective Computational Geometry for Curves and Surfaces (2004)

    Google Scholar 

  26. Schwartz, J.T.: Fast Probabilistic Algorithms for Verification of Polynomial Identities. J. ACM 27(4), 701–717 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sekigawa, H.: Using Interval Computation with the Mahler Measure for Zero Determination of Algebraic Numbers. Josai University Information Sciences Research 9(1), 83–99 (1998)

    Google Scholar 

  28. Shewchuk, J.R.: Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete and Computational Geometry 18, 305–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tulone, D., Yap, C., Li, C.: Randomized Zero Testing of Radical Expressions and Elementary Geometry Theorem Proving. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS, vol. 2061, pp. 58–82. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. Yap, C.: Towards Exact Geometric Computation. Computational Geometry: Theory and Applications 7, 3–23 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yap, C., Dubé, T.: The Exact Computation Paradigm. In: Du, D.Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry. Lecture Notes Series on Computing, vol. 4, pp. 452–492. World Scientific, Singapore (1995)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schirra, S. (2009). Much Ado about Zero. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03456-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03455-8

  • Online ISBN: 978-3-642-03456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics