Skip to main content

On Negations in Boolean Networks

  • Chapter
Efficient Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5760))

Abstract

Although it is well known by a counting argument that relative to the full basis most Boolean functions need exponentially many operations, for explicit Boolean functions only linear lower bounds with small constant factors are known. For monotone networks (i.e., networks without negations) exponential lower bounds for explicit monotone Boolean functions have been proved. We describe the state of the art and give some arguments why techniques developed for the proof of lower bounds for monotone networks cannot easily be extended to Boolean networks with negations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Boppana, R.B.: The monotone circuit complexity of Boolean functions. Combinatorica 7, 1–22 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amano, K., Maruoka, A.: The potential of the approximation method. SIAM J. Comput. 33, 433–447 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing the clique function with at most (1/6)loglogN negation gates. SIAM J. Comput. 35, 201–216 (2005)

    Article  MATH  Google Scholar 

  4. Andreev, A.E.: On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl. 31, 530–534 (1985)

    MATH  Google Scholar 

  5. Beals, R., Nishino, T., Tanaka, K.: On the complexity of negation-limited Boolean networks. SIAM J. Comput. 27, 1334–1347 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berg, C., Ulfberg, S.: Symmetric approximation arguments for monotone lower bounds without sunflowers. Comput. Complex. 8, 1–20 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berkowitz, S.J.: On some relationships between monotone and non-monotone circuit complexity, Tech. Report, Comput. Sci. Dept., Univ. of Toronto (1982)

    Google Scholar 

  8. Blum, N.: A Boolean function requiring 3n network size. TCS 28, 337–345 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blum, N.: An Ω(n 4/3) lower bound on the monotone network complexity of the n th degree convolution. TCS 36, 59–69 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brown, W.G.: On graphs that do not contain a Thompson graph. Canad. Math. Bull. 9, 281–285 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chow, T.Y.: Almost-natural proofs. In: Proc. 49th FOCS, pp. 72–77 (2008)

    Google Scholar 

  12. Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  13. Dunne, P.E.: The Complexity of Boolean Networks. Academic Press, London (1988)

    MATH  Google Scholar 

  14. Fischer, M.J.: The complexity of negation-limited networks - a brief survey. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 71–82. Springer, Heidelberg (1975)

    Google Scholar 

  15. Haken, A.: Counting bottlenecks to show monotone \(P \not= NP\). In: Proc. 36th FOCS, pp. 36–40 (1995)

    Google Scholar 

  16. Harnik, D., Raz, R.: Higher lower bounds on monotone size. In: Proc. 32nd STOC, pp. 191–201 (2000)

    Google Scholar 

  17. Iwama, K., Lachish, O., Morizumi, H., Raz, R.: An explicit lower bound of 5n − o(n) for Boolean circuits (manuscript, 2005)

    Google Scholar 

  18. Jukna, S.: Combinatorics of monotone computations. Combinatorica 19, 65–85 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karchmer, M.: On proving lower bounds for circuit size. In: Proc. 8th Structure in Complexity Theory, pp. 112–118 (1993)

    Google Scholar 

  20. Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)

    MathSciNet  MATH  Google Scholar 

  21. Lamagna, E.A.: The complexity of monotone networks for certain bilinear forms, routing problems, sorting and merging. IEEE Trans. Comput. 28, 773–782 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Markov, A.A.: On the inversion complexity of a system of functions. J. ACM 5, 331–334 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehlhorn, K., Galil, Z.: Monotone switching circuits and Boolean matrix product. Computing 16, 99–111 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mehlhorn, K.: Some remarks on Boolean sums. Acta Inform. 12, 371–375 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Neciporuk, E.I.: On a Boolean matrix. Systems Theory Res. 21, 236–239 (1971)

    MathSciNet  MATH  Google Scholar 

  26. Paterson, M.S.: Complexity of monotone networks for Boolean matrix product. TCS 1, 13–20 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paul, W.J.: A 2.5n lower bound on the combinational complexity of Boolean functions. SIAM J. Comput. 6, 427–443

    Google Scholar 

  28. Pippenger, N.: On another Boolean matrix. TCS 11, 49–56 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pippenger, N., Valiant, L.G.: Shifting graphs and their applications. J. ACM 23, 423–432

    Google Scholar 

  30. Pratt, V.R.: The power of negative thinking in multiplying Boolean matrices. SIAM J. Comput. 4, 326–330 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean functions. Soviet Math. Dokl. 31, 354–357 (1985)

    MATH  Google Scholar 

  32. Razborov, A.A.: A lower bound on the monotone network complexity of the logical permanent. Math. Notes Acad. Sci. USSR 37, 485–493 (1985)

    MATH  Google Scholar 

  33. Razborov, A.A.: On the method of approximation. In: Proc. 21st STOC, pp. 167–176 (1989)

    Google Scholar 

  34. Razborov, A.A., Rudich, S.: Natural proofs. JCSS 55, 24–35 (1997)

    MATH  Google Scholar 

  35. Savage, J.E.: Models of Computation: Exploring the Power of Computing. Addison-Wesley, Reading (1998)

    MATH  Google Scholar 

  36. Schnorr, C.P.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Computing 13, 155–171 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Techn. J. 28, 59–98 (1949)

    Article  MathSciNet  Google Scholar 

  38. Simon, J., Tsai, S.-C.: On the bottleneck counting argument. TCS 237, 429–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stockmeyer, L.: On the combinational complexity of certain symmetric Boolean functions. Math. Systems Theory 10, 323–336 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tardos, É.: The gap between monotone and non-monotone circuit complexity is exponential. Combinatorica 8, 141–142 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tiekenheinrich, J.: A 4n lower bound on the monotone Boolean complexity of a one output Boolean function. IPL 18, 201–202 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Valiant, L.G.: Graph-theoretic properties in computational complexity. JCSS 13, 278–285 (1976)

    MathSciNet  MATH  Google Scholar 

  43. Valiant, L.G.: Negation is powerless for Boolean slice functions. SIAM J. Comput. 15, 531–535 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wegener, I.: Switching functions whose monotone complexity is nearly quadratic. TCS 9, 83–97 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wegener, I.: A new lower bound on the monotone network complexity of Boolean sums. Acta Informatica 13, 109–114 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wegener, I.: Boolean functions whose monotone complexity is of size n 2/logn. TCS 21, 213–224 (1982)

    Article  MATH  Google Scholar 

  47. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner, Chichester (1987)

    MATH  Google Scholar 

  48. Weiß, J.: An n 3/2 lower bound on the monotone network complexity of the Boolean convolution. Information and Control 59, 184–188 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  49. Widgerson, A.: The fusion method for lower bounds in circuit complexity. In: Combinatorics, Paul Erdős is eighty. Elsevier, Amsterdam (1993)

    Google Scholar 

  50. Zwick, U.: A 4n lower bound on the combinational complexity of certain symmetric Boolean functions over the basis of unate dyadic Boolean functions. SIAM J. Comput. 20, 499–505 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blum, N. (2009). On Negations in Boolean Networks. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03456-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03455-8

  • Online ISBN: 978-3-642-03456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics