Skip to main content

Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology

Part of the book series: NanoScience and Technology ((NANO))

Summary

In recent years, the atomic force microscope (AFM) has become an important tool in ophthalmic research. It has gained popularity largely because AFM is not restricted by the diffraction limits of light microscopy and can be applied to resolve images with molecular resolution. AFM is a minimally invasive technique and can be used to visualize molecular structures under near-physiological conditions. In addition, the AFM can be employed as a force apparatus to characterize the viscoelastic properties of biomaterials on the micron level and at the level of individual proteins. In this article, we summarize recent AFM studies of ocular tissues, while highlighting the great potential of AFM technology in ophthalmic research. Previous research demonstrates the versatility of the AFM as high resolution imaging technique and as a sensitive force apparatus for probing the mechanical properties of ocular tissues. The structural and mechanical properties of ocular tissues are of major importance to the understanding of the optomechanical functions of the human eye. In addition, AFM has played an important role in the development and characterization of ocular biomaterials, such as contact lenses and intraocular lenses. Studying ocular tissues using Atomic Force Microscopy has enabled several advances in ophthalmic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Engel, Y. Lyubchenko, and D. Muller, Atomic force microscopy: a powerful tool to observe biomolecules at work. Trends Cell Biol. 9(2), 77–80(1999).

    PubMed  CAS  Google Scholar 

  2. W.F. Heinz, J.H. Hoh, Relative surface charge density mapping with the atomic force microscope. Biophys. J. 76(1 Pt 1), 528–538(1999).

    PubMed  CAS  Google Scholar 

  3. H.W. Wu, T. Kuhn, and V.T. Moy, Mechanical properties of l929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20, 389–397(1998).

    PubMed  CAS  Google Scholar 

  4. A. Glasser, Restoration of accommodation. Curr. Opin. Ophthalmol. 17(1), 12–8(2006).

    MathSciNet  Google Scholar 

  5. A. Glasser, Accommodation: mechanism and measurement. Ophthalmol. Clin. North Am. 19(1), 1–12(2006).

    PubMed  Google Scholar 

  6. R.I. Barraquer, et al., Human lens capsule thickness as a function of age and location along the sagittal lens perimeter. Invest. Ophthalmol. Vis. Sci. 47(5), 2053–2060(2006).

    PubMed  Google Scholar 

  7. D. Atchison, G. Smith (eds.), Optics of the Human Eye (Butterworth Heinemann: Oxford, UK, 2000), pp. 16–18.

    Google Scholar 

  8. A Glasser, P.L. Kaufman, Accommodation and presbyopia. In Adler’s Physiology of the Eye. Clinical Application, 10th edn., edited by P.L. Kaufman, A. Alm (Mosby, St Louis, MO, 2003), pp. 197–233.

    Google Scholar 

  9. R. Fisher, The significance of the shape of the lens and capsular energy changes in accommodation. J. Physiol. 201, 21–47(1969).

    PubMed  CAS  Google Scholar 

  10. W.N. Charman, The eye in focus: accommodation and presbyopia. Clin. Exp. Optom. 91(3), 207–225(2008).

    PubMed  Google Scholar 

  11. H.J. Wyatt, Some aspects of the mechanics of accommodation. Vis. Res. 28, 75–86(1988).

    PubMed  CAS  Google Scholar 

  12. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933(1986).

    ADS  Google Scholar 

  13. H.X. You, J.M. Lau, S. Zhang, L. Yu, Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology. Ultramicroscopy 82, 297–305(2000).

    PubMed  CAS  Google Scholar 

  14. E. A-Hassan, W. Heinz, M.D. Antonik, N.P. D’Costa, S. Nageswaran, C.A. Schoenenberger, J.H. Hoh, Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578(1998).

    PubMed  CAS  Google Scholar 

  15. R. Afrin, A. Ikai, Force profiles of protein pulling with or without cytoskeletal links studied by AFM. Biochem. Biophys. Res. Commun. 348, 238–244(2006).

    PubMed  CAS  Google Scholar 

  16. J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, D. Navajas, Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071–2079(2003).

    PubMed  ADS  CAS  Google Scholar 

  17. M. Benoit, H.E. Gaub, Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs 172, 174–189(2002).

    PubMed  CAS  Google Scholar 

  18. H.J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152(2005).

    ADS  CAS  Google Scholar 

  19. G.T. Charras, M.A. Horton, Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82, 2970–2981(2002).

    PubMed  ADS  CAS  Google Scholar 

  20. S.L. Crick, F.C. Yin, Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech. Model. Mechanobiol. 6, 199–210(2007).

    PubMed  CAS  Google Scholar 

  21. J. Domke, S. Dannohl, W.J. Parak, O. Muller, W.K. Aicher, M. Radmacher, Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf. B Biointerfaces 19, 367–379(2000).

    PubMed  CAS  Google Scholar 

  22. V. Dupres, F.D. Menozzi, C. Locht, B.H. Clare, N.L. Abbott, S. Cuenot, C. Bompard, D. Raze, Y.F. Dufrene, Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2, 515–520(2005).

    PubMed  CAS  Google Scholar 

  23. A.J. Engler, F. Rehfeldt, S. Sen, D.E. Discher, Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell. Biol. 83, 521–545(2007).

    PubMed  CAS  Google Scholar 

  24. E.L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, V.T. Moy, H.E. Gaub, Sensing specific molecular-interactions with the atomic-force microscope. Biosens. Bioelectron. 10, 895–901(1995).

    CAS  Google Scholar 

  25. M. Grandbois, W. Dettmann, M. Benoit, H.E. Gaub, Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724(2000).

    PubMed  CAS  Google Scholar 

  26. W. Haberle, J K.H. Horber, G. Binnig, Force microscopy on living cells. J. Vac. Sci. Technol. B 9, 1210–1213(1991).

    Google Scholar 

  27. A. Hategan, R. Law, S. Kahn, D.E. Discher, Adhesively-tensed cell membranes: lysis kinetics and atomic force microscopy probing. Biophys. J. 85, 2746–2759(2003).

    PubMed  CAS  Google Scholar 

  28. E. Henderson, P.G. Haydon, D.S. Sakaguchi, Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257, 1944–1946(1992).

    PubMed  ADS  CAS  Google Scholar 

  29. P. Hinterdorfer, Y.F. Dufrene, Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355(2006).

    PubMed  CAS  Google Scholar 

  30. J.H. Hoh, C.A. Schoenenberger, Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107, 1105–1114(1994).

    PubMed  Google Scholar 

  31. K. Hyonchol, H. Arakawa, T. Osada, A. Ikai, Quantification of fibronectin and cell surface interactions by AFM. Colloid Surf. B-Biointerfaces 25, 33–43(2002).

    CAS  Google Scholar 

  32. H. Kim, H. Arakawa, T. Osada, A. Ikai, Quantification of cell adhesion force with AFM: distribution of vitronectin receptors on a living MC3T3-E1 cell. Ultramicroscopy 97, 359–363(2003).

    PubMed  CAS  Google Scholar 

  33. E. Kokkoli, S.E. Ochsenhirt, M. Tirrell, Collective and single-molecule interactions of alpha(5)beta(1) integrins. Langmuir 20, 2397–2404(2004).

    PubMed  CAS  Google Scholar 

  34. M. Krieg, Y. Arboleda-Estudillo, P.H. Puech, J. Kafer, F. Graner, D.J. Muller, C.P. Heisenberg, Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436(2008).

    PubMed  CAS  Google Scholar 

  35. R. Lal, B. Drake, D. Blumberg, D.R. Saner, P.K. Hansma, S.C. Feinstein, Imaging real-time neurite outgrowth and cytoskeletal reorganization with an atomic force microscope. Am. J. Physiol.-Cell Physiol. 269, C275–C285(1995).

    CAS  Google Scholar 

  36. I. Lee, R.E. Marchant, Force measurements on platelet surfaces with high spatial resolution under physiological conditions. Colloid Surf. B-Biointerfaces 19, 357–365(2000).

    CAS  Google Scholar 

  37. Q.S. Li, G.Y. Lee, C.N. Ong, C.T. Lim, AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. (2008).

    Google Scholar 

  38. T. Ludwig, R. Kirmse, K. Poole, U.S. Schwarz, Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Arch. 456, 29–49(2008).

    PubMed  CAS  Google Scholar 

  39. R.E. Mahaffy, S. Park, E. Gerde, J. Kas, C.K. Shih, Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86, 1777–1793(2004).

    PubMed  ADS  CAS  Google Scholar 

  40. R.E. Mahaffy, C.K. Shih, F.C. MacKintosh, J. Kas, Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880–883(2000).

    PubMed  ADS  CAS  Google Scholar 

  41. J.C. Martens, M. Radmacher, Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch. 456, 95–100(2008).

    PubMed  CAS  Google Scholar 

  42. A.B. Mathur, A.M. Collinsworth, W.M. Reichert, W.E. Kraus, G.A. Truskey, Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34, 1545–1553(2001).

    PubMed  CAS  Google Scholar 

  43. A.B. Mathur, G.A. Truskey, W.M. Reichert, Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78, 1725–1735(2000).

    PubMed  CAS  Google Scholar 

  44. V.T. Moy, E.L. Florin, H.E. Gaub, Adhesive forces between ligand and receptor measured by AFM. Biophys. J. 66, A340(1994).

    Google Scholar 

  45. P.H. Puech, A. Taubenberger, F. Ulrich, M. Krieg, D.J. Muller, C.P. Heisenberg, Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J. Cell Sci. 118, 4199–4206(2005).

    PubMed  CAS  Google Scholar 

  46. C.A.J. Putman, K.O. Vanderwerf, B.G. Degrooth, N.F. Vanhulst, J. Greve, Viscoelasticity of living cells allows high-resolution imaging by tapping mode atomic-force microscopy. Biophys. J. 67, 1749–1753(1994).

    PubMed  ADS  CAS  Google Scholar 

  47. C.A.J. Putman, K.O. Vanderwerf, B.G. Degrooth, N.F. Vanhulst, F.B. Segerink, J. Greve, Atomic force microscope with integrated optical microscope for biological applications. Rev. Sci. Instr. 63, 1914–1917(1992).

    ADS  CAS  Google Scholar 

  48. M. Radmacher, Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Magn. 16, 47–57(1997).

    CAS  Google Scholar 

  49. M. Radmacher, Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol. 83, 347–372(2007).

    PubMed  CAS  Google Scholar 

  50. M. Radmacher, R.W. Tillmann, M. Fritz, H.E. Gaub, From molecules to cells: imaging soft samples with the atomic force microscope. Science 257, 1900–1905(1992).

    PubMed  ADS  CAS  Google Scholar 

  51. F. Rico, P. Roca-Cusachs, N. Gavara, R. Farre, M. Rotger, D. Navajas, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E 72(2005).

    Google Scholar 

  52. F. Rico, P. Roca-Cusachs, R. Sunyer, R. Farre, D. Navajas, Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips. J. Mol. Recognit. 20, 459–466(2007).

    PubMed  CAS  Google Scholar 

  53. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112(1997).

    PubMed  CAS  Google Scholar 

  54. C. Rotsch, F. Braet, E. Wisse, M. Radmacher, AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol. Int. 21, 685–696(1997).

    PubMed  CAS  Google Scholar 

  55. C. Rotsch, M. Radmacher, Drug-Induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78, 520–535(2000).

    PubMed  ADS  CAS  Google Scholar 

  56. S.W. Schneider, P. Pagel, C. Rotsch, T. Danker, H. Oberleithner, M. Radmacher, A. Schwab, Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflugers Arch.-Eur. J. Physiol. 439, 297–303(2000).

    CAS  Google Scholar 

  57. S.G. Shroff, D.R. Saner, R. Lal, Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic-force microscopy. Am. J. Physiol.-Cell Physiol. 38, C286–C292(1995).

    Google Scholar 

  58. A. Simon, M.-C. Durrieu, Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron 37, 13(2006).

    Google Scholar 

  59. L. Sirghi, J. Ponti, F. Broggi, F. Rossi, Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur. Biophys. J. 37, 935–945(2008).

    PubMed  CAS  Google Scholar 

  60. M. Stolz, R. Raiteri, A.U. Daniels, M.R. VanLandingham, W. Baschong, U. Aebi, Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys. J. 86, 3269–3283(2004).

    PubMed  ADS  CAS  Google Scholar 

  61. A. Touhami, B. Nysten, Y.F. Dufrene, Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543(2003).

    CAS  Google Scholar 

  62. H.X. You, L. Yu, Atomic force microscopy imaging of living cells: progress, problems and prospects. Methods Cell Sci. 21, 1–17(1999).

    PubMed  CAS  Google Scholar 

  63. A.E. Pelling, M.A. Horton, An historical perspective on cell mechanics. Pflugers Arch. 456, 3–12(2008).

    PubMed  CAS  Google Scholar 

  64. P. Roca-Cusachs, I. Almendros, R. Sunyer, N. Gavara, R. Farre, D. Navajas, Rheology of passive and adhesion-activated neutrophils probed by atomic force microscopy. Biophys. J. 91, 3508–3518(2006).

    PubMed  ADS  CAS  Google Scholar 

  65. G.A. Abrams, S.S. Schaus, S.L. Goodman, P.F. Nealey, C.J. Murphy. Nanoscale topography of the corneal epithelial basement membrane and Descemet’s membrane of the human. Cornea 19(1), 57–64(2000).

    PubMed  CAS  Google Scholar 

  66. A. Antunes, F.V. Gozzo, M.I. Borella, M. Nakamura, A.M.V. Safatle, P.S.M. Barros, H.E. Toma. Atomic force imaging of ocular tissues: morphological study of healthy and cataract lenses. In Modern Research and Educational Topics in Microscopy (Formatex, 2007a).

    Google Scholar 

  67. A. Antunes, F.V. Gozzo, M. Nakamura, A.M. Safatle, S.L. Morelhão, H.E. Toma, P.S. Barros. Analysis of the healthy rabbit lens surface using MAC mode atomic force microscopy. Micron 38(3), 286–290(2007b).

    PubMed  CAS  Google Scholar 

  68. N. Buzhynskyy, J.F. Girmens, W. Faigle, S. Scheuring, Human cataract lens membrane at subnanometer resolution. J. Mol. Biol. 374, 162–169(2007a).

    PubMed  CAS  Google Scholar 

  69. N. Buzhynskyy, R.K. Hite, T. Walz, S. Scheuring. The supramolecular architecture of junctional microdomains in native lens membranes. EMBO Rep. 8, 51–55(2007b).

    PubMed  CAS  Google Scholar 

  70. J. Candiello, M. Balasubramani, E.M. Schreiber, G.J. Cole, U. Mayer, W. Halfter, H. Lin. Biomechanical properties of native basement membranes. FEBS J. 274(11), 2897–908(2007).

    PubMed  CAS  Google Scholar 

  71. N.J. Fullwood, A. Hammiche, H.M. Pollock, D.J. Hourston, M. Song. Atomic force microscopy of the cornea and sclera. Curr. Eye Res. 14, 529–535(1995).

    PubMed  CAS  Google Scholar 

  72. M. Lombardo, M.P. De Santo, G. Lombardo, R. Barberi, S. Serrao. Atomic force microscopy analysis of normal and photoablated porcine corneas. J. Biomech. 39(14), 2719–2724(2006a).

    PubMed  Google Scholar 

  73. S. Lydataki, E. Lesniewska, M.K. Tsilimbaris, C. Le Grimellec, L. Rochette, J.P. Goudonnet, I.J. Pallikaris. Observation of the posterior endothelial surface of the rabbit cornea using atomic force microscopy. Cornea 22(7), 651–664(2003).

    PubMed  CAS  Google Scholar 

  74. S.B. Mallick, A. Ivanisevic. Study of the morphological and adhesion properties of collagen fibers in the Bruch’s membrane. J. Phys. Chem. B. 109(41):19052–19055(2005).

    PubMed  CAS  Google Scholar 

  75. S.B. Mallick, S. Bhagwandin, A. Ivanisevic. Characterization of collagen fibers in Bruch’s membrane using chemical force microscopy. Anal. Bioanal. Chem. 386(3), 652–657(2006).

    PubMed  CAS  Google Scholar 

  76. S. Mangenot, N. Buzhynskyy, J.F. Girmens, S. Scheuring. Malformation of junctional microdomains in cataract lens membranes from a type II diabetes patient. Eur. J. Physiol. (2008).

    Google Scholar 

  77. P. Matteini, F. Sbrana, B. Tiribilli, R. Pini. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea. Lasers Med. Sci.(2008). DOI 10.1007/s10103–008–0617–4.

    Google Scholar 

  78. K.M. Meek, N.J. Fullwood. Corneal and scleral collagens – a microscopist’s perspective. Micron 32, 261–272(2001).

    PubMed  CAS  Google Scholar 

  79. D. Meller, K. Peters, K. Meller. Human cornea and sclera studied by atomic force microscopy. Cell Tissue Res. 288(1), 111–118(1997).

    PubMed  CAS  Google Scholar 

  80. A. Miyagawa, M. Kobayashi, Y. Fujita, M. Nakamura, K. Hirano, K. Kobayashi, Y. Miyake, Surface topology of collagen fibrils associated with proteoglycans in mouse cornea and sclera. Japan J. Ophthalmol. 44, 591–595(2000).

    CAS  Google Scholar 

  81. A. Miyagawa, M. Kobayashi, Y. Fujita, O. Hamdy, K. Hirano, M. Nakamura, Y. Miyake, Surface ultrastructure of collagen fibrils and their association with proteoglycans in human cornea and sclera by atomic force microscopy and energy-filtering transmission electron microscopy. Cornea 20(6), 651–656(2001).

    PubMed  CAS  Google Scholar 

  82. A. Nógrádi, B. Hopp, K. Révész, G. Szabó, Z. Bor, L. Kolozsvari, Atomic force microscopic study of the human cornea following excimer laser keratectomy. Exp. Eye Res. 70, 363–368(2000).

    PubMed  Google Scholar 

  83. S. Scheuring, N. Buzhynskyy, S. Jaroslawski, R.P. Goncalves, R.K. Hite, T. Walz, Structural models of the supramolecular organization of AQP0 and connexons in junctional microdomains. J. Struct. Biol. 160, 385–394(2007).

    PubMed  CAS  Google Scholar 

  84. M.K. Tsilimbaris, E. Lesniewska, S. Lydataki, C. Le Grimellec, J.P. Goudonnet, I.G. Pallikaris, The use of atomic force microscopy for the observation of corneal epithelium surface. Invest. Ophthalmol. Vis. Sci. 41(3), 680–686(2000).

    PubMed  CAS  Google Scholar 

  85. S. Yamamoto, J. Hitomi, M. Shigeno, S. Sawaguchi, H. Abe, T. Ushiki Atomic force microscopic studies of isolated collagen fibrils of the bovine cornea and sclera. Arch. Histol. Cytol. 60(4), 371–378(1997).

    PubMed  CAS  Google Scholar 

  86. S. Yamamoto, H. Hashizume, J. Hitomi, M. Shigeno, S. Sawaguchi, H. Abe, T. Ushiki, The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force microscopy. Arch. Histol. Cytol. 63(2), 127–135(2000).

    PubMed  CAS  Google Scholar 

  87. S. Yamamoto, J. Hitomi, S. Sawaguchi, H. Abe, M. Shigeno, T. Ushiki. Observation of human corneal and scleral collagen fibrils by atomic force microscopy. Japan J. Ophthalmol. 46, 496–501(2002).

    Google Scholar 

  88. N.M. Ziebarth, E.P. Wojcikiewicz, F. Manns, V.T. Moy, J.-M. Parel. Atomic force microscopy measurements of lens elasticity in monkey eyes. Mol. Vis. 13, 504–510(2007).

    PubMed  Google Scholar 

  89. N.A. Burnham, O.P. Behrend, F. Oulevey, G. Gremaud, P.J. Gallo, D. Gourdon, E. Dupas, A.J. Kulik, H.M. Pollock, G.A.D. Briggs, How does a tip tap? Nanotechnology 8, 67–75(1997).

    ADS  Google Scholar 

  90. J.H. Hoh, R. Lal, S.A. John, J.P. Revel, M.F. Arnsdorf, Atomic force microscopy and dissection of gap junctions. Science 253, 1405–1408(1991).

    PubMed  ADS  CAS  Google Scholar 

  91. J.H. Hoh, G.E. Sosinsky, J.P. Revel, P.K. Hansma, Structure of the extracellular surface of the gap junction by atomic force microscopy. Biophys. J. 65, 149–163(1993).

    PubMed  ADS  CAS  Google Scholar 

  92. P.K. Hansma, J.P. Cleveland, M. Radmacher, D.A. Walters, P.E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H.G. Hansma, C.B. Prater, J. Massie, L. Fukunaga, J. Gurley, V. Elings, Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740(1994).

    ADS  CAS  Google Scholar 

  93. E. Nagao, J.A. Dvorak, An integrated approach to the study of living cells by atomic force microscopy. J. Microsc.-Oxf. 191, 8–19(1998).

    CAS  Google Scholar 

  94. M.A. Poggi, E.D. Gadsby, L.A. Bottomley, W.P. King, E. Oroudjev, H. Hansma, Scanning probe microscopy. Anal. Chem. 76, 3429–3443(2004).

    CAS  Google Scholar 

  95. B. Cappella, G. Dietler, Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1(1999).

    CAS  Google Scholar 

  96. N.J. Tao, S.M. Lindsay, S. Lees, Measuring the microelastic properties of biological-material. Biophys. J. 63, 1165–1169(1992).

    PubMed  ADS  CAS  Google Scholar 

  97. P. Frederix, T. Akiyama, U. Staufer, C. Gerber, D. Fotiadis, D.J. Muller, A. Engel, Atomic force bio-analytics. Curr. Opin. Chem. Biol. 7, 647(2003).

    Google Scholar 

  98. D.C. Lin, E.K. Dimitriadis, F. Horkay, Robust strategies for automated AFM force curve analysis-II: adhesion-influenced indentation of soft, elastic materials. J. Biomech. Eng. 129, 904–912(2007).

    PubMed  Google Scholar 

  99. D.C. Lin, E.K. Dimitriadis, F. Horkay, Robust strategies for automated AFM force curve analysis–I. Non-adhesive indentation of soft, inhomogeneous materials. J. Biomech. Eng. 129, 430–440(2007).

    PubMed  Google Scholar 

  100. F. Obataya, C. Nakamura, S.W. Han, N. Nakamura, J. Miyake, Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens. Bioelectron. 20, 1652–1655(2005).

    PubMed  CAS  Google Scholar 

  101. E.P. Wojcikiewicz, X. Zhang, V.T. Moy, Force and compliance measurements on living cells using atomic force microscopy (AFM). Biol. Proc. Online 6, 1–9(2004).

    CAS  Google Scholar 

  102. E.P. Wojcikiewicz, X. Zhang, A. Chen, V.T. Moy, Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion. J. Cell Sci. 116, 2531–2539(2003).

    PubMed  CAS  Google Scholar 

  103. C.Y. Zhang, Y.W. Zhang, Computational analysis of adhesion force in the indentation of cells using atomic force microscopy. Phys. Rev. 77, 021912(2008).

    ADS  CAS  Google Scholar 

  104. N.M. Ziebarth, E.P. Wojcikiewicz, F. Manns, V.T. Moy, J.M. Parel, Atomic force microscopy measurements of lens elasticity in monkey eyes. Mol. Vis. 13, 504–510(2007).

    PubMed  Google Scholar 

  105. Y.F. Dufrene, P. Hinterdorfer, Recent progress in AFM molecular recognition studies. Pflugers Arch. 456, 237–245(2008).

    PubMed  CAS  Google Scholar 

  106. V. Dupres, C. Verbelen, Y.F. Dufrene, Probing molecular recognition sites on biosurfaces using AFM. Biomaterials 28, 2393–2402(2007).

    PubMed  CAS  Google Scholar 

  107. C. Verbelen, N. Christiaens, D. Alsteens, V. Dupres, A.R. Baulard, Y.F. Dufrene, Molecular mapping of lipoarabinomannans on mycobacteria. Langmuir (2009).

    Google Scholar 

  108. M. Gerhard, M.A. Nabil, Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047(1988).

    Google Scholar 

  109. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, J. Gurley, An atomic-resolution atomic-force microscope implemented using an optical-lever. J. Appl. Phys. 65, 164–167(1989).

    ADS  CAS  Google Scholar 

  110. M.A. Horton, G.T. Charras, G. Ballestrem, P.P. Lehenkari, Integration of atomic force and confocal microscopy. Single Mol. 1, 135–137(2000).

    ADS  CAS  Google Scholar 

  111. J.L. Choy, S.H. Parekh, O. Chaudhuri, A.P. Liu, C. Bustamante, M.J. Footer, J.A. Theriot, D.A. Fletcher, Differential force microscope for long time-scale biophysical measurements. Rev. Sci. Instrum. 78, 043711(2007).

    PubMed  ADS  Google Scholar 

  112. V. Heinrich, C. Ounkomol, Force versus axial deflection of pipette-aspirated closed membranes. Biophys. J. 93, 363–372(2007).

    PubMed  ADS  CAS  Google Scholar 

  113. C. Ounkomol, H. Xie, P.A. Dayton, V. Heinrich, Versatile horizontal force probe for mechanical tests on pipette-held cells, particles, and membrane capsules. Biophys. J. 96, 1218–1231(2009).

    PubMed  ADS  CAS  Google Scholar 

  114. P.P. Lehenkari, G.T. Charras, A. Nykanen, M.A. Horton, Adapting atomic force microscopy for cell biology. Ultramicroscopy 82, 289–295(2000).

    PubMed  CAS  Google Scholar 

  115. P.H. Puech, K. Poole, D. Knebel, D.J. Muller, A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy (2006).

    Google Scholar 

  116. T. Ando, T. Uchihashi, N. Kodera, D. Yamamoto, A. Miyagi, M. Taniguchi, H. Yamashita, High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch. 456, 211–225(2008).

    PubMed  CAS  Google Scholar 

  117. D.J. Muller, A. Engel, J.L. Carrascosa, M. Velez, The bacteriophage phi29 head-tail connector imaged at high resolution with the atomic force microscope in buffer solution. EMBO J. 16, 2547–2553(1997).

    PubMed  CAS  Google Scholar 

  118. D.J. Muller, D. Fotiadis, S. Scheuring, S.A. Muller, A. Engel, Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76, 1101–1111(1999).

    PubMed  CAS  Google Scholar 

  119. D.J. Muller, K.T. Sapra, S. Scheuring, A. Kedrov, P.L. Frederix, D. Fotiadis, A. Engel, Single-molecule studies of membrane proteins. Curr. Opin. Struct. Biol. 16, 489–495(2006).

    PubMed  Google Scholar 

  120. G.T. Charras, M.A. Horton, Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys. J. 83, 858–879(2002).

    PubMed  ADS  CAS  Google Scholar 

  121. M.H. Abdulreda, V.T. Moy, Atomic force microscope studies of the fusion of floating lipid bilayers. Biophys. J. 92, 4369–4378(2007).

    PubMed  ADS  CAS  Google Scholar 

  122. I. Obataya, C. Nakamura, S. Han, N. Nakamura, J. Miyake, Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. NanoLett. 5, 27–30(2005).

    ADS  CAS  Google Scholar 

  123. L. Lu, S.J. Oswald, H. Ngu, F.C. Yin, Mechanical properties of actin stress fibers in living cells. Biophys. J. 95, 6060–6071(2008).

    PubMed  ADS  CAS  Google Scholar 

  124. E.K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick, Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810(2002).

    PubMed  CAS  Google Scholar 

  125. K.D. Costa, A.J. Sim, F.C. Yin, Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J. Biomech. Eng. 128, 176–184(2006).

    PubMed  Google Scholar 

  126. K.D. Costa, F.C.P. Yin, Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J. Biomech. Eng. 121, 462–471(1999).

    PubMed  CAS  Google Scholar 

  127. H. Hertz, On the contact of elastic bodies. In Hertz’s Miscellaneous Papers (Macmillan, London, 1881) pp. 146–162.

    Google Scholar 

  128. M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland, P.K. Hansma, Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567(1996).

    PubMed  CAS  Google Scholar 

  129. J.R. Barber, D.A. Billings, An approximate solution for the contact area and elastic compliance of a smooth punch of arbitrary shape. Int. J. Mech. Sci. 32, 991–997(1990).

    MATH  Google Scholar 

  130. E.M. Darling, S. Zauscher, J.A. Block, F. Guilak, A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys. J. 92, 1784–1791(2007).

    PubMed  ADS  CAS  Google Scholar 

  131. B.A. Smith, B. Tolloczko, J.G. Martin, P. Grutter, Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys. J. 88, 2994–3007(2005).

    PubMed  CAS  Google Scholar 

  132. H.F. Edelhauser, J.L. Ubels, Cornea and Sclera. In Adler’s Physiology of the Eye, edited by P. Kaufman, A. Alm (Mosby, Inc., St. Louis, MO, 2003).

    Google Scholar 

  133. F.E. Fantes, G.O. Waring, Effect of excimer laser radiant exposure on uniformity of ablated corneal surface. Lasers Surg. Med. 9(6), 533–542(1989).

    PubMed  CAS  Google Scholar 

  134. T. Møller-Pedersen, H.D. Cavanagh, W.M. Petroll, J.V. Jester, Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy. Ophthalmology. 107, 1235–1245(2000).

    PubMed  Google Scholar 

  135. A. Keirl, C. Christie. Clinical Optics and Refraction: A Guide for Optometrists, Contact Lens Opticians and Dispensing Opticians. (Elsevier Health Sciences, New York, 2007).

    Google Scholar 

  136. E. Chalupa, H.A. Swarbrick, B.A. Holden, J. Sjöstrand, Severe corneal infections associated with contact lens wear. Ophthalmology. 94(1), 17–22(1987).

    PubMed  CAS  Google Scholar 

  137. S. Bhatia, E.P. Goldberg, J.B. Enns, Examination of contact lens surfaces by atomic force microscope (AFM). CLAO J. 23(4), 264–269(1997).

    PubMed  CAS  Google Scholar 

  138. J.M. González-Méijome, A. López-Alemany, J.B. Almeida, M.A. Parafita, M.F. Refojo, Microscopic observation of unworn siloxane–hydrogel soft contact lenses by atomic force microscopy. J. Biomed. Mater. Res. Part B: Appl. Biomater. 76B(2), 412–418 (2005).

    Google Scholar 

  139. J. Baguet, F. Sommer, T.M. Duc, Imaging surfaces of hydrophilic contact lenses with the atomic force microscope. Biomaterials. 14(4), 279–284(1993).

    PubMed  CAS  Google Scholar 

  140. J. Baguet, F. Sommer, V. Claudon-Eyl, T.M. Duc, Characterization of lacrymal component accumulation on worn soft contact lens surfaces by atomic force microscopy. Biomaterials. 16(1), 3–9(1995).

    PubMed  CAS  Google Scholar 

  141. E.P. Goldberg, S. Bhatia, J.B. Enns, Hydrogel contact lens-corneal interactions: a new mechanism for deposit formation and corneal injury. CLAO J. 23(4), 243–248(1997).

    PubMed  CAS  Google Scholar 

  142. V. Guryca, R. Hobzová, M. Prádný, J. Sirc, J. Michálek. Surface morphology of contact lenses probed with microscopy techniques. Cont. Lens Anterior Eye. 30(4), 215–222(2007).

    PubMed  Google Scholar 

  143. C. Maldonado-Codina, N. Efron, Impact of manufacturing technology and material composition on the surface characteristics of hydrogel contact lenses. Clin. Exp. Optom. 88(6), 396–404(2005).

    PubMed  Google Scholar 

  144. C.E. Rabke, P.L. Valint, D.M. Ammon, Ophthalmic applications of atomic force microscopy. ICLC 22, 32–41(1995).

    Google Scholar 

  145. J.H. Teichroeb, J.A. Forrest, V. Ngai, J.W. Martin, L. Jones, J. Medley, Imaging protein deposits on contact lens materials. Optom. Vis. Sci. 85(12), 1151–1164(2008).

    Google Scholar 

  146. G.L. Grobe, P.L. Valint, D.M. Ammon, Surface chemical structure for soft contact lenses as a function of polymer processing. J. Biomed. Mater. Res. 32(1), 45–54(1996).

    PubMed  CAS  Google Scholar 

  147. R.P. Santos, T.T. Arruda, C.B. Carvalho, V.A. Carneiro, L.Q. Braga, E.H. Teixeira, F.V. Arruda, B.S. Cavada, A. Havt, T.M. de Oliveira, G.A. Bezerra, V.N. Freire, Correlation between Enterococcus faecalis biofilms development stage and quantitative surface roughness using atomic force microscopy. Microsc. Microanal. 14(2), 150–158(2008).

    PubMed  CAS  Google Scholar 

  148. G.M. Bruinsma, M. Rustema-Abbing, J. de Vries, H.J. Busscher, M.L. van der Linden, J.M. Hooymans, H.C. van der Mei, Multiple surface properties of worn RGP lenses and adhesion of Pseudomonas aeruginosa. Biomaterials 24(9), 1663–1670(2003).

    PubMed  CAS  Google Scholar 

  149. A. Opdahl, S.H. Kim, T.S. Koffas, C. Marmo, G.A. Somorjai, Surface mechanical properties of pHEMA contact lenses: viscoelastic and adhesive property changes on exposure to controlled humidity. J. Biomed. Mater. Res. A. 67(1), 350–356(2003).

    PubMed  Google Scholar 

  150. S.H. Kim, C. Marmo, G.A. Somorjai, Friction studies of hydrogel contact lenses using AFM: non-crosslinked polymers of low friction at the surface. Biomaterials 22(24), 3285–3294(2001).

    PubMed  CAS  Google Scholar 

  151. S.H. Kim, A. Opdahl, C. Marmo, G.A. Somorjai, AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials 23(7), 1657–1666(2002).

    PubMed  CAS  Google Scholar 

  152. L.A. Remington, Clinical Anatomy of the Visual System (Butterworth-Heinemann, Boston, 1998).

    Google Scholar 

  153. R.C. Augusteyn, Growth of the lens: in vitro observations. Clin. Exp. Optometry 91(3), 226–239(2008).

    Google Scholar 

  154. S.K. Pandey, J. Thakur, L. Werner, M.E. Wilson, L.P. Werner, A.M. Izak, D.J. Apple, The human crystalline lens, ciliary body, and zonules: their relevance to presbyopia. In Presbyopia: A Surgical Textbook, edited by A. Agarwal (Slack Incorporated, Thorofare, NJ, 2002).

    Google Scholar 

  155. V.L. Taylor, K.J. Al-Ghoul, C.W. Lane, V.A. Davis, J.R. Kuszak, M.J. Costello, Morphology of the normal human lens. Invest. Ophthalmol. Visual Sci. 37(7), 1396–1410(1996).

    CAS  Google Scholar 

  156. D.C. Beebe, The lens. In Adler’s Physiology of the Eye, edited by P. Kaufman, A. Alm (Mosby, Inc., St. Louis, MO, 2003).

    Google Scholar 

  157. A. Shiels, S. Bassnett, Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat. Genet. 12(2), 212–215(1996).

    PubMed  CAS  Google Scholar 

  158. E.F. Fincham. The mechanism of accommodation. Br. J. Ophthalmol. Monograph Supplement VIII (1937).

    Google Scholar 

  159. J. Kessler, Experiments in refilling the lens. Arch. Ophthalmol. 71, 412–417(1964).

    PubMed  CAS  Google Scholar 

  160. J. Kessler, Refilling the rabbit lens. Further experiments. Arch. Ophthalmol. 76(4), 596–598(1966).

    CAS  Google Scholar 

  161. R.F. Fisher, Elastic constants of the human lens capsule. J. Physiol. 201, 1–19(1969).

    PubMed  CAS  Google Scholar 

  162. E.F. Fincham, The changes in the form of the crystalline lens in accommodation. Trans. Opt. Soc. 26, 239–269(1925).

    Google Scholar 

  163. B. Gilmartin, The aetiology of presbyopia: a summary of the role of lenticular and extralenticular structures. Opthal. Physiol. Opt. 15(5), 431–437(1995).

    CAS  Google Scholar 

  164. M. Tscherning. Le mecanisme de l’accommodation. Annals Oculiat. 131, 168–179(1904).

    Google Scholar 

  165. S. Krag, T. Olsen, T.T. Andreassen, Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest. Ophthalmol. Visual Sci. 38, 357–363(1997).

    CAS  Google Scholar 

  166. K.R. Heys, S.L. Cram, R.J.W. Truscott, Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol. Vis. 10, 956–963(2004).

    PubMed  Google Scholar 

  167. K.R. Heys, R.J. Truscott, The stiffness of human cataract lenses is a function of both age and the type of cataract. Exp. Eye Res. 86(4), 701–703(2008).

    PubMed  CAS  Google Scholar 

  168. H.A. Weeber, G. Eckert, F. Soergel, C.H. Meyer, W. Pechhold, R.G.L. van der Heijde. Dynamic mechanical properties of human lenses. Exp. Eye Res. 80, 425–434(2005).

    PubMed  CAS  Google Scholar 

  169. F. Soergel, C. Meyer, G. Eckert, B. Abele, W. Pechhold, Spectral analysis of viscoelasticity of the human lens. J. Refract. Surg. 15, 714–716(1999).

    PubMed  CAS  Google Scholar 

  170. H.A. Weeber, G. Eckert, W. Pechhold, R.G.L. van der Heijde, Stiffness gradient in the crystalline lens. Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 1357–1366(2007).

    Google Scholar 

  171. R.A. Schachar, B.K. Pierscionek, Lens hardness not related to the age-related decline of accommodative amplitude. Mol. Vis. 13, 1010–1011(2007).

    PubMed  Google Scholar 

  172. M. Lombardo, M.P. De Santo, G. Lombardo, R. Barberi, S. Serrao, Analysis of intraocular lens surface properties with atomic force microscopy. J. Cataract Refract. Surg. 32, 1378–1384(2006b).

    PubMed  Google Scholar 

  173. Y. Ohnishi, T. Yoshitomi, T. Sakamoto, K. Fujisawa, T. Ishibashi. Evaluation of cellular adhesions on silicone and poly(methyl methacrylate) intraocular lenses in monkey eyes; an electron microscopic study. J. Cataract Refract. Surg. 27, 2036–2040(2001).

    PubMed  CAS  Google Scholar 

  174. C. Cassinelli, M. Morra, A. Pavesio, D. Renier. Evaluation of interfacial properties of hyaluronan coated poly(methylmethacrylate) intraocular lenses. J. Biomater. Sci. Polym. Edn. 11(9), 961–977(2000).

    CAS  Google Scholar 

  175. D. Bozukova, C. Pagnoulle, M.C. De Pauw-Gillet, S. Desbief, R. Lazzaroni, N. Ruth, R. Jrme, C. Jrme. Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules. 8(8), 2379–2387(2007).

    PubMed  CAS  Google Scholar 

  176. M. Dogru, K. Tetsumoto, Y. Tagami, K. Kato, K. Nakamae. Optical and atomic force microscopy of an explanted AcrySof intraocular lens with glistenings. J. Cataract Refract. Surg. 26(4), 571–575(2000).

    PubMed  CAS  Google Scholar 

  177. R.K. Sharma, B.E.J. Ehinger. Development and structure of the retina. In Adler’s Physiology of the Eye, edited by P. Kaufman, A. Alm. (Mosby, Inc., St. Louis, MO, 2003).

    Google Scholar 

  178. A. Hendrickson, Organization of the adult primate fovea. In Macular Degeneration, edited by P.L. Penfold, J.M. Provis (Springer, Berlin, 2005).

    Google Scholar 

  179. P.L. Penfold, J. Wong, D. van Driel, J.M. Provis, M.C. Madigan, Immunology and age-related macular degeneration. In Macular Degeneration, edited by P.L. Penfold, J.M. Provis (Springer, Berlin, 2005).

    Google Scholar 

  180. G. Wu, Retina: The Fundamentals (W.B. Saunders, St. Louis, MO, 1995).

    Google Scholar 

  181. W. Halfter, M. Willem, U. Mayer, Basement membrane-dependent survival of retinal ganglion cells. Invest. Ophthalmol. Visual Sci. 46, 1000–1009(2005).

    Google Scholar 

  182. R.F. Fisher, The elastic constants of the human lens. J. Physiol. 212, 147–180(1971).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jean-Marie Parel, Ph.D., and Fabrice Manns, Ph.D., of the Ophthalmic Biophysics Center of Bascom Palmer Eye Institute, for providing their expertise in preparation of this chapter. The authors also thank the following support: NSF MRI 0722372; University of Miami SAC Award; NIH EY14225; NSF Graduate Student Fellowship (NMZ); Rakhi Jain, Ph.D., AMO, CA; Florida Lions Eye Bank; Vision Cooperative Research Centre, Sydney, New South Wales, Australia, supported by the Australian Federal Government through the Cooperative Research Centres Programme; NIH center grant P30-EY014801; Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël M. Ziebarth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ziebarth, N.M., Rico, F., Moy, V.T. (2010). Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03535-7_11

Download citation

Publish with us

Policies and ethics