Skip to main content

Optimization of Finite Difference Method with Multiwavelet Bases

  • Conference paper
Contemporary Computing (IC3 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 40))

Included in the following conference series:

Abstract

Multiwavelet based methods are among the latest techniques to solve partial differential equations (PDEs) numerically. Finite Difference Method (FDM) - powered by its simplicity - is one of the most widely used techniques to solve PDEs numerically. But it fails to produce better result in problems where the solution is having both sharp and smooth variations at different regions of interest. In such cases, to achieve a given accuracy an adaptive scheme for proper grid placement is needed. In this paper we propose a method, ‘Multiwavelet Optimized Finite Difference Method’ (MWOFD) to overcome the drawback of FDM. In the proposed method, multiwavelet coefficients are used to place non-uniform grids adaptively. This method is highly converging and requires only less number of grids to achieve a given accuracy when contrasted with FDM. The method is demonstrated for nonlinear Schrödinger equation and Burgers’ equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Booton, R.C.: Computational methods for Electromagnetics and Microwaves. Wiley series in Microwave and Optical Engineering. Wiley-IEEE Press (1992)

    Google Scholar 

  2. Smith, G.D.: Numerical Solution of Partial Differential equations: Finite Difference Methods. Oxford Univ. Press, Oxford (1985)

    Google Scholar 

  3. Ruppa, K.T., Parimal, T., Mohammad, R.R.: Wavelet optimized finite- difference Approach to solve jump-diffusion type partial differential equation for option pricing. Computing in Economics and Finance 2005 series, Soc. for Computational Economics, vol. 471 (2005)

    Google Scholar 

  4. Kumar, V., Mehra, M.: Wavelet optimized finite difference method using interpolating wavelets for solving singularly perturbed problems. Journal of Wavelet Theory and Applications 1(1), 83–96 (2007)

    Google Scholar 

  5. Karami, A., Karimi, H.R., Moshiri, B., Maralani, P.J.: Investigation of Interpolating Wavelets Theory for the Resolution of PDEs. Int. J. Contemp. Math. Sci. 3(21), 1017–1029 (2008)

    Google Scholar 

  6. Beylkin, G., Keiser, J.M.: On the adaptive numerical solution of nonlinear partial differential equations in the wavelet bases. J. Comp. Physics 132, 233–259 (1997)

    Article  Google Scholar 

  7. Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys. 182 (2002)

    Google Scholar 

  8. Fann, G., Beylkin, G., Harrison, R.J., Jordan, K.E.: Singular operators in multiwavelet bases. IBM J. Res. and Dev. 48(2) (2004)

    Google Scholar 

  9. George, W.P.: Wavelets in Electromagnetics and Device Modeling. Wiley series in Microwave and Optical Engineering. Wiley-IEEE Press (2003)

    Google Scholar 

  10. Beylkin, G., Coifman, R.R., Rokhlin, V.: Fast wavelet transform and numerical algorithms. J. Comm. Pure Appl. Math. 44, 141–183 (1991)

    Article  Google Scholar 

  11. Wang, G., Pan, G.: Full wave analysis of microstrip floating line structure by wavelet expansion method. IEEE Trans. Microwave Theory Tech. 43, 131–142 (1995)

    Article  CAS  Google Scholar 

  12. Steinberg, B., Leviatan, Y.: On the use of wavelet expansions in the method of moments. IEEE Trans. Ant. Propg. 41(5), 610–619 (1993)

    Article  Google Scholar 

  13. Alpert, B.: A class of bases in L2 for the sparse representation of integral operators. SIAM J. Appl. Math. Anal. 24(1), 246–262 (1993)

    Article  Google Scholar 

  14. Jameson, L.: On the wavelet-optimized finite difference method. Technical report, NASA CR-191601, ICASE Report no. 94-9 (1994)

    Google Scholar 

  15. Ole, M., Nielson: Wavelets in scientific computing. Ph.D. Thesis, Department of Mathematical modeling, Technical University of Denmark (1998)

    Google Scholar 

  16. Capdeboscq, Y., Vogelius, M.S.: Wavelet based homogenization of a 2 dimensional elliptic problem. Hal-00021467, Version 1, Mardi 21 Mars (2006)

    Google Scholar 

  17. Jameson, L.: On the Daubechies-based wavelet differentiation matrix. J. Sci. Comp. 8(3), 267–305 (1993)

    Article  Google Scholar 

  18. Charton, P., Perrier, V.: A pseudo-wavelet scheme for the two dimensional Navier-Stokes equations. Mathematica Aplicada e Computational 15(2), 139–160 (1996)

    Google Scholar 

  19. Dorobantu, M.: Wavelet-based algorithms for fast PDE solvers. Ph.D. Thesis, Royal Institute of Technology, Stockholm (1995)

    Google Scholar 

  20. Keinert, F.: Wavelets and Multiwavelets. Chapman & Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  21. Chung, T.J.: Computational fluid dynamics. Cambridge University press, Cambridge (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sumesh, E.P., Elias, E. (2009). Optimization of Finite Difference Method with Multiwavelet Bases. In: Ranka, S., et al. Contemporary Computing. IC3 2009. Communications in Computer and Information Science, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03547-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03547-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03546-3

  • Online ISBN: 978-3-642-03547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics