Skip to main content

Geometric Characterizations of Graphs Using Heat Kernel Embeddings

  • Conference paper
Mathematics of Surfaces XIII (Mathematics of Surfaces 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5654))

Included in the following conference series:

Abstract

In this paper, we investigate the heat kernel embedding as a route to computing geometric characterisations of graphs. The reason for turning to the heat kernel is that it encapsulates information concerning the distribution of path lengths and hence node affinities on the graph. The heat kernel of the graph is found by exponentiating the Laplacian eigensystem over time. The matrix of embedding co-ordinates for the nodes of the graph is obtained by performing a Young-Householder decomposition on the heat kernel. Once the embedding of its nodes is to hand we proceed to characterise a graph in a geometric manner. To obtain this characterisation, we focus on the edges of the graph under the embedding. Here we use the difference between geodesic and Euclidean distances between nodes to associate a sectional curvature with edges. Once the section curvatures are to hand then the Gauss-Bonnet theorem allows us to compute Gaussian curvatures at nodes on the graph. We explore how the attributes furnished by this analysis can be used to match and cluster graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkins, J.E., Boman, E.G., Hendrickson, B.: A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Comput. 28(1), 297–310 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barlow, M.T.: Diffusions on fractals. Lecture Notes Math., vol. 1690, pp. 1–121. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14 (2002)

    Google Scholar 

  4. Chung, F.R.K.: Spectral graph theory. CBMS 92 (1997)

    Google Scholar 

  5. Cox, T., Cox, M.: Multidimensional Scaling. Chapman-Hall, Boca Raton (1994)

    MATH  Google Scholar 

  6. de Verdi‘ere, Y.C.: Spectres de graphes. Societe Mathematique De France (1998)

    Google Scholar 

  7. Dubuisson, M., Jain, A.: A modified Hausdorff distance for object matching, pp. 566–568 (1994)

    Google Scholar 

  8. Gilkey, P.B.: Invariance theory, heat equation, and the index theorem. Mathematics Lecture Series (1984)

    Google Scholar 

  9. Grigor’yan, A.: Heat kernels on manifolds, graphs and fractals. European Congress of Mathematics I, 393–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heut, B., Hancock, E.R.: Relational object recognition from large structural libraries. Pattern Recognition 32, 1895–1915 (2002)

    Article  MATH  Google Scholar 

  11. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE. Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)

    Article  Google Scholar 

  12. Lebanon, G., Lafferty, J.D.: Hyperplane margin classifiers on the multinomial manifold. In: ICML (2004)

    Google Scholar 

  13. Lindman, H., Caelli, T.: Constant curvature Riemannian scaling. Journal of Mathematical Psychology 17, 89–109 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, B., Hancock, E.R.: Structural graph matching using the EM algorithm and singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1120–1136 (2001)

    Article  Google Scholar 

  16. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogintion 36, 2213–2230 (2003)

    Article  MATH  Google Scholar 

  17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290 (5500), 2323–2326 (2000)

    Article  Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE PAMI 22, 888–905 (2000)

    Article  Google Scholar 

  19. Shokoufandeh, A., Dickinson, S.J., Siddiqi, K., Zucker, S.W.: Indexing using a spectral encoding of topological structure. In: CVPR, pp. 2491–2497 (1999)

    Google Scholar 

  20. Smola, E.J., Kondor, R.: Kernels and regularization on graphs (2004)

    Google Scholar 

  21. Spivak, M.: A Comprehensive Introduction to Differential Geometry, 2nd edn., vol. 1-5. Publish or Parish, Houston (1979)

    MATH  Google Scholar 

  22. Stillwell, J.: Mathematics and its History. Springer, New York (1974)

    MATH  Google Scholar 

  23. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319 (2000)

    Article  Google Scholar 

  24. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Patt. Anal. Mach. Intell. 10, 695–703 (1988)

    Article  MATH  Google Scholar 

  25. Xiao, B., Hancock, E.R.: Trace formula analysis of graphs. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 306–313. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Yau, S.T., Schoen, R.M.: Differential Geometry. Science Publication Co. (1988) (in Chinese)

    Google Scholar 

  27. Zhou, D., Schölkopf, B.: A regularization framework for learning from graph data. In: ICML Workshop on Statistical Relational Learning and Its Connections to Other Fields, pp. 132–137 (2004)

    Google Scholar 

  28. Zhu, X., Kandola, J.S., Ghahramani, Z., Lafferty, J.D.: Nonparametric transforms of graph kernels for semi-supervised learning. In: NIPS (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El-Ghawalby, H., Hancock, E.R. (2009). Geometric Characterizations of Graphs Using Heat Kernel Embeddings. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03596-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03595-1

  • Online ISBN: 978-3-642-03596-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics