Skip to main content

Physiology and Biochemistry

  • Chapter
Malassezia and the Skin

Core Messages

Due to the ecologic niche of Malassezia yeasts, host-specific adaptations are an important issue in their biology. The commensal status of Malassezia yeasts is not clearly distinguished from the pathogenic stage, as transition from the one to the other is probably a continuum and not an on/off condition. Part of this pathogenic potential is determined by the activities of the enzymatic systems of Malassezia yeasts. The efficiency with which Malassezia yeasts utilize nutrients on the skin surface and in the sebaceous gland determines the size of their population, and also the quality and quantity of the produced metabolic by-products. This organic material ranges from free fatty acids that apply their action through an irritating or toxic effect to highly bioactive indole derivatives that bind to specific cellular receptors and regulate the expression of downstream metabolic pathways. The recently reported genome and secretory proteome of M. globosa and, in part, of M. restricta provide a molecular basis to understand the adaptions of Malassezia yeasts to their environment and to identify factors of pathogenicity. As many experiments on Malassezia biochemistry and physiology had been performed before the current taxonomy of Malassezia species was developed, and the corresponding strains were not deposited in official fungal collections, the genus name Malassezia will be used to include strains that were categorized as Malassezia furfur (sensu lato), Pityrosporum ovale and Pityrosporum orbiculare (see Chap. 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kesavan S, Holland KT, Ingham E (2000) The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. Med Mycol 38:239-247

    PubMed  CAS  Google Scholar 

  2. Kesavan S, Walters CE, Holland KT et al (1998) The effects of Malassezia on pro-inflammatory cytokine production by human peripheral blood mononuclear cells in vitro. Med Mycol 36:97-106

    PubMed  CAS  Google Scholar 

  3. Porro MN, Passi S, Caprill F et al (1976) Growth requirement and lipid metabolism of Pityrosporum orbiculare. J Invest Dermatol 66:178-182

    Article  PubMed  CAS  Google Scholar 

  4. Shifrine M, Marr AG (1963) The requirement of fatty acids by Pityrosporum ovale. J Gen Microbiol 32:263-270

    PubMed  CAS  Google Scholar 

  5. Wilde PF, Stewart PS (1968) A study of the fatty acid metabolism of the yeast Pityrosporum ovale. Biochem J 108:225-231

    PubMed  CAS  Google Scholar 

  6. Xu J, Saunders CW, Hu P et al (2007) Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA 104:18730-18735

    Article  PubMed  CAS  Google Scholar 

  7. Huang HP, Little CJ, Fixter LM (1993) Effects of fatty acids on the growth and composition of Malassezia pachydermatis and their relevance to canine otitis externa. Res Vet Sci 55:119-123

    Article  PubMed  CAS  Google Scholar 

  8. Porro M, Passi S, Caprilli F et al (1977) Induction of hyphae in cultures of Pityrosporum by cholesterol and cholesterol esters. J Invest Dermatol 69:531-534

    Article  PubMed  CAS  Google Scholar 

  9. Riciputo RM, Oliveri S, Micali G et al (1996) Phospholipase activity in Malassezia furfur pathogeneic strains. Mycoses 39:233-235

    Article  PubMed  CAS  Google Scholar 

  10. Hossain HM, Landgraf V, Weiß R et al (2007) The genetic and biochemical characterization of the species Malassezia pachydermatis with particular attention on pigment-producing subgroups. Med Mycol 45:41-49

    Article  PubMed  CAS  Google Scholar 

  11. Slooff WC (1970) Genus 6 Pityrosporum Sabouraud. In: Lodder J (ed) The yeasts, a taxonomic study, 2nd edn. North-Holland, Amsterdam, pp 1167-1186

    Google Scholar 

  12. Weary PE (1970) Comedogenic potential of the lipid extract of Pityrosporum ovale. Arch Dermatol 102:84-91

    Article  PubMed  CAS  Google Scholar 

  13. Benham RW (1945) Pityrosporum ovale. A lipophilic fungus. Thiamin and oxalo-acetic acid as growth factors. Proc Soc Exp Biol Med 58:199-201

    CAS  Google Scholar 

  14. Brotherton J (1967) Lack of swelling and shrinking of Pityrosporum ovale in media of different osmotic pressures and its relationship with survival in the relatively dry condition of the scalp. J Gen Microbiol 48:305-308

    PubMed  CAS  Google Scholar 

  15. Mittag H (1994) Fine structural investigation of Malassezia furfur. I. Size and shape of the yeast cells and a consideration of their ploidy. Mycoses 37:393-399

    Article  PubMed  CAS  Google Scholar 

  16. Mittag H (1995) Fine structural investigation of Malassezia furfur. II. The envelope of the yeast cells. Mycoses 38:13-21

    Article  PubMed  CAS  Google Scholar 

  17. Simmons RB, Ahearn DG (1987) Cell wall ultrastructure and diazonium blue B reaction of Sporopachydermia quercum, Bullera tsugae, and Malassezia spp. Mycologia 79:38-43

    Article  Google Scholar 

  18. Barfatani M, Munn RJ, Schjeide OA (1964) An ultrastructure study of Pityrosporum orbiculare. J Invest Dermatol 43:231-233

    PubMed  CAS  Google Scholar 

  19. Breathnach AS, Gross M, Martin B (1976) Freeze-fracture replications of cultured Pityrosporum orbiculare. Sabouraudia 14:105-113

    Article  PubMed  CAS  Google Scholar 

  20. Keddie FM (1966) Electron microscopy of Malassezia furfur in tinea versicolor. Sabouraudia 5:134-137

    Article  PubMed  CAS  Google Scholar 

  21. Swift JA, Dunbar SF (1965) The ultrastructure of Pityrosporum ovale and Pityrosporum canis. Nature 206:1174-1175

    Article  PubMed  CAS  Google Scholar 

  22. Thompson E, Colvin JR (1970) Composition of the cell wall of Pityrosporum ovale (Bizzozero) Castellani and Chalmers. Can J Microbiol 16:263-265

    Article  PubMed  CAS  Google Scholar 

  23. Eichstedt CF (1846) Pilzbildung in der Pityriasis versicolor. Froriep’s Neue Notizen aus dem Gebiete der Natur- und Heilkunde 853:270-271

    Google Scholar 

  24. Dorn M, Roehnert K (1977) Dimorphism of Pityrosporum orbiculare in a defined culture medium. J Invest Dermatol 69:224-248

    Article  Google Scholar 

  25. Faergemann J, Bernander S (1981) Micro-aerophilic and anaerobic growth of Pityrosporum orbiculare. Sabouraudia 17:171-179

    Article  Google Scholar 

  26. Saadatzadeh MR, Ashbee HR, Cunliffe WJ et al (2001) Cell-mediated immunity to the mycelial phase of Malassezia spp. in patients with pityriasis versicolor and controls. Br J Dermatol 144:77-84

    Article  PubMed  CAS  Google Scholar 

  27. Crespo Erchiga V, Ojeda Mertos A, Vra Casano A et al (2000) Malassezia globosa as the causative agent of pityriasis versicolor. Br J Dermatol 143:799-803

    Article  PubMed  CAS  Google Scholar 

  28. Burke RC (1961) Tinea versicolor: susceptibility factors and experimental infections in human beings. J Invest Derm 36:389-401

    PubMed  CAS  Google Scholar 

  29. Caprilli F, Mercantini R, Nazzaro-Porro M et al (1973) Studies of the genus Pityrosporum in submerged culture. Mycopathol Mycol Appl 51:171-189

    Article  PubMed  CAS  Google Scholar 

  30. Gordon MA (1951) The lipophilic mycoflora of the skin. I. In vitro culture of Pityrosporum orbiculare n.sp. Mycologia 43:524-535

    Article  Google Scholar 

  31. Guého E, Midgley G, Guillot J (1996) The genus of Malassezia with description of four new species. Antonie von Leeuwenhock 69:337-355

    Article  Google Scholar 

  32. Guého E, Boekhout T, Ashbee HR et al (1998) The role of Malassezia species in the ecology of human skin and as pathogens. Med Mycol 36:220-229

    PubMed  Google Scholar 

  33. Roberts SOB (1969) Pityriasis versicolor: a clinical and mycological investigation. Br J Derm 81:315-326

    Article  CAS  Google Scholar 

  34. McGinley KJ, Leyden LJ, Marples RR et al (1975) Quantitative microbiology of the scalp in non-dandruff, dandruff and seborrheic dermatitis. J Invest Dermatol 64:401-405

    Article  PubMed  CAS  Google Scholar 

  35. Catterall MD, Ward MW, Jacobs P (1978) A reappraisal of the role of Pityrosporum orbiculare in pityriasis versicolor and the significance of extracellular lipase. J Invest Dermatol 71:398-401

    Article  PubMed  CAS  Google Scholar 

  36. Mayser P, Führer D, Schmidt R et al (1995) Hydrolysis of fatty acid esters by Malassezia furfur: different utilization depending on alcohol moiety. Acta Derm Venereol 75:105-109

    PubMed  CAS  Google Scholar 

  37. Mayser P, Pickel M, Haze P et al (1998) Different utilization of neutral lipids by Malassezia furfur and Malassezia sympodialis. Med Mycol 36:7-14

    Article  PubMed  CAS  Google Scholar 

  38. Mayser P, Haze P, Papavassilis C et al (1997) Differentiation of Malassezia spp. selectivity of cremophor EL, castor oil and ricinoleic acid for Malassezia furfur. Br J Dermatol 137:208-213

    Article  PubMed  CAS  Google Scholar 

  39. Ran Y, Yoshike T, Ogawa H (1993) Lipase of Malassezia furfur: some properties and their relationship to cell growth. J Med Vet Mycol 31:77-85

    Article  PubMed  CAS  Google Scholar 

  40. Plotkin LI, Squiquera L, Mathov I et al (1996) Characterization of the lipase activity of Malassezia furfur. J Med Vet Mycol 34:43-48

    Article  PubMed  CAS  Google Scholar 

  41. Brunke S, Hube B (2006) MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology 152:547-454

    Article  PubMed  CAS  Google Scholar 

  42. Shibate N, Okanuma N, Hirai K et al (2006) Isolation, characterization and molecular cloning of a lipolytic enzyme secreted from Malassezia pachydermatitis. FEMS Microbiol Lett 256:137-144

    Article  Google Scholar 

  43. DeAngelis YM, Saunders CW, Johnstone KR et al (2007) Isolation and expression of a Malassezia globosa lipase gene, LIP1. J Invest Dermatol 127:2138-2146

    Article  PubMed  CAS  Google Scholar 

  44. Ro BI, Dawson TL (2005) The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J Invest Dermatol Symp Proc 10:194-197

    Article  CAS  Google Scholar 

  45. Nazzaro-Porro M, Passi S, Picardo M et al (1986) Lipoxygenase activity of Pityrosporum in vitro and vivo. J Invest Dermatol 87:108-112

    Article  PubMed  CAS  Google Scholar 

  46. De Luca C, Picardo M, Breathnach A et al (1996) Lipoperoxidase activity of Pityrosporum: characterisation of by-products and possible role in pityriasis versicolor. Exp Dermatol 5:49-56

    Article  PubMed  Google Scholar 

  47. Nazzaro-Porro M, Passi S (1978) Identification of tyrosinase inhibitors in cultures of Pityrosporum. J Invest Dermatol 71:205-208

    Article  PubMed  CAS  Google Scholar 

  48. Breathnach AS, Nazzaro-Porro M, Passi S (1984) Azelaic acid. Br J Dermatol 111:115-120

    Article  PubMed  CAS  Google Scholar 

  49. Robins EJ, Breathnach AS, Bennet D et al (1985) Ultrastructural observations on the effect of azelaic acid on normal human melanocytes and human melanoma cell line in tissue culture. Br J Dermatol 113:687-697

    Article  PubMed  CAS  Google Scholar 

  50. Elewski B, Thiboutot D (2006) A clinical overview of azelaic acid. Cutis 77(suppl 2):12-16

    PubMed  Google Scholar 

  51. van Abbe NJ (1964) The investigation of dandruff. J Soc Cosmet Chem 15:609-630

    Google Scholar 

  52. Labows JN, McGinley KJ, Leyden JJ et al (1979) Characteristic gamma-lactone odor production of the genus Pityrosporum. Appl Environ Microbiol 38:412-415

    PubMed  CAS  Google Scholar 

  53. Cafarchia C, Otranto D (2004) Association between phospholipase production by M. pachydermatitis and skin lesions. J Clin Microbiol 42:4868-4869

    Article  PubMed  CAS  Google Scholar 

  54. Cafarchia C, Gasser RB, Latrofa MS et al (2008) Genetic variants of Malassezia pachydermatis from canine skin: body distribution and phospholipase activity. FEMS Yeast Res 8: 451-459

    Article  PubMed  CAS  Google Scholar 

  55. Cafarchia C, Dell’Aquila ME, Capelli G et al (2007) Role of beta-endorphin on phospholipase production in Malassezia pachydermatis in dogs: new insights into the pathogenesis of this yeast. Med Mycol 45:11-15

    Article  PubMed  CAS  Google Scholar 

  56. Bigliardi-Qi M, Lipp B, Sumanovski LT et al (2005) Changes of epidermal mu-opiate receptor expression and nerve endings in chronic atopic dermatitis. Dermatology 210:91-99

    Article  PubMed  CAS  Google Scholar 

  57. Langfelder K, Streibel M, Jahn B et al (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143-58

    Article  PubMed  CAS  Google Scholar 

  58. Gaitanis G, Chasapi V, Velegraki A (2005) Novel application of the masson-fontana stain for demonstrating Malassezia species melanin-like pigment production in vitro and in clinical specimens. J Clin Microbiol 43:4147-4151

    Article  PubMed  Google Scholar 

  59. Mayser P, Imkampe A, Winkeler M et al (1998) Growth requirements and nitrogen metabolism of Malassezia furfur. Arch Dermatol Res 290:277-282

    Article  PubMed  CAS  Google Scholar 

  60. Mayser P, Wille G, Imkampe A et al (1998) Synthesis of fluorochromes and pigments in Malassezia furfur by use of tryptophan as single nitrogen source. Mycoses 41:265-271

    Article  PubMed  CAS  Google Scholar 

  61. Polacheck I, Kwon-Chung KJ (1988) Melanogenesis in Cryptococcus neoformans. J Gen Microbiol 134:1037-1041

    PubMed  CAS  Google Scholar 

  62. Polak A (1990) Melanin as a virulence factor in pathogenic fungi. Mycoses 33:215-224

    PubMed  CAS  Google Scholar 

  63. Mayser P, Töws A, Krämer HJ et al (2004) Further characterization of pigment-producing Malassezia strains. Mycoses 47:34-39

    Article  PubMed  CAS  Google Scholar 

  64. Gupta AK, Batra R, Bluhm R et al (2003) Pityriasis versicolor. Dermatol Clin 21:413-429

    Article  PubMed  Google Scholar 

  65. Thoma W, Krämer HJ, Mayser P (2005) Pityriasis versicolor alba. JEADV 19:147-152

    PubMed  CAS  Google Scholar 

  66. Machowinski A, Krämer HJ, Hort W et al (2006) Pityriacitrin - a potent UV filter produced by Malassezia furfur and its effect on human skin microflora. Mycoses 49:388-392

    Article  PubMed  CAS  Google Scholar 

  67. Mayser P, Pape B (1998) Decreased susceptibility of Malassezia furfur to UV light by synthesis of tryptophan derivatives. Antonie van Leeuwenhoek 73:315-319

    Article  PubMed  CAS  Google Scholar 

  68. Mayser P, Schäfer U, Krämer HJ et al (2002) Pityriacitrin - an ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur. Arch Dermatol Res 294:131-134

    Article  PubMed  CAS  Google Scholar 

  69. Hiram De Almeida Jr, Mayser P (2006) Absence of sunburn in lesions of pityriasis versicolor alba. Mycoses 49:516

    Article  Google Scholar 

  70. Mayser P, Stapelkamp H, Krämer HJ et al (2003) Pityrialacton - a new fluorochrome from the tryptophan metabolism of Malassezia furfur. Antonie van Leeuwenhoek 84:185-191

    Article  PubMed  CAS  Google Scholar 

  71. Irlinger B, Krämer HJ, Mayser P et al (2004) Pityriarubins, biologically active Bis(indolyl)spirans from cultures of the lipophilic yeast Malassezia furfur. Angew Chem Int Ed Engl 43:1098-1100

    Article  PubMed  CAS  Google Scholar 

  72. Davis PD, Hill CH, Lawton G et al (1992) Inhibitors of protein kinase C. 1. 2, 3-Bisindolyarylmaleimides. J Med Chem 35:177-184

    Article  PubMed  CAS  Google Scholar 

  73. Krämer HJ, Kessler D, Hipler UC et al (2005) Pityriarubins, novel highly selective inhibitors of respiratory burst from cultures of the yeast Malassezia furfur: comparison with the bisindolylmaleimide arcyriarubin A. ChemBioChem 6:2290-2297

    Article  PubMed  Google Scholar 

  74. Wroblewski N, Bär S, Mayser P (2005) Missing granulocytic infiltrate in pityriasis versicolor - indication of specific anti-inflammatory activity of the pathogen? Mycoses 48(suppl 1): 66-71

    Article  PubMed  Google Scholar 

  75. Wille G, Mayser P, Thoma W et al (2001) Malassezin - A novel agonist of the arylhydrocarbon receptor from the yeast Malassezia furfur. Bioorg Med Chem 9:955-960

    Article  PubMed  CAS  Google Scholar 

  76. Krämer HJ, Podobinska M, Bartsch A et al (2005) Malassezin, a novel agonist of the arylhydrocarbon receptor from the yeast Malassezia furfur, induces apoptosis in primary human melanocytes. ChemBioChem 6:860-865

    Article  PubMed  Google Scholar 

  77. Dahms K, Krämer HJ, Thoma W et al (2002) Tyrosinaseinhibition durch Tryptophanmetabolite von Malassezia furfur in humaner epidermis. Mycoses 45:230

    Google Scholar 

  78. Thoma W, Dahms K, Krämer HJ et al (2001) Tyrosinase-Inhibition durch KO27- einem Stoffwechselmetaboliten von Malassezia furfur. Mycoses 44:238

    Google Scholar 

  79. Irlinger B, Bartsch A, Krämer HJ et al (2005) New tryptophan metabolites from cultures of the lipophilic yeast Malassezia furfur. Helv Chim Acta 88:1472-1485

    Article  CAS  Google Scholar 

  80. Fritsche E, Schäfer C, Calles C et al (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci 104:8851-8856

    Article  PubMed  CAS  Google Scholar 

  81. Adachi J, Mori Y, Matsui S et al (2001) Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 276:31475-31478

    Article  PubMed  CAS  Google Scholar 

  82. Gaitanis G, Magiatis P, Stathopoulou K et al (2008) AhR Ligands, malassezin, and indolo[3, 2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J Invest Dermatol 128:1620-1625

    Article  PubMed  CAS  Google Scholar 

  83. Giakoumaki D, Stathopoulou K, Melliou E et al (2008) Identification of indirubin as a metabolite of Malassezia furfur strains isolated from diseased skin. 7th Joint Meeting of AFERP, ASP, GA, PSE, SIF. Natural products with pharmaceutical, neutraceutical, cosmetic and agrochemical interest. Athens, Greece

    Google Scholar 

  84. Zuther K, Mayser P, Hettwer U et al (2008) The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Mol Microbiol 68:152-172

    Article  PubMed  CAS  Google Scholar 

  85. Diatchenko L, Lau YF, Campbell AP et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025-6030

    Article  PubMed  CAS  Google Scholar 

  86. Hort W, Lang S, Brunke S et al (2008) Analysis of differentially expressed genes associated with tryptophan-dependent pigment synthesis in M. furfur by cDNA subtraction technology. Med Mycol 25:1-11

    Google Scholar 

  87. Barchmann T, Hort W, Mayser P (2005) Untersuchungen zur Regulation des Tryptophan-abhängigen Sekundärmetabolismus von Malassezia furfur. Mycoses 48:307

    Google Scholar 

  88. Mayser P, Wenzel M, Krämer HJ et al (2007) Production of indole pigments by Candida glabrata. Med Mycol 45:519-524

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mayser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mayser, P., Gaitanis, G. (2010). Physiology and Biochemistry. In: Boekhout, T., Mayser, P., Guého-Kellermann, E., Velegraki, A. (eds) Malassezia and the Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03616-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03616-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03615-6

  • Online ISBN: 978-3-642-03616-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics