Skip to main content

Studies on α-Aminophosphonates with Antiviral Activity

  • Chapter
Environment-Friendly Antiviral Agents for Plants

Abstract Introduction

As a kind of natural amino acid analogue, α-aminophosphonates constitute an important class of compounds with diverse biological activities and potential to be employed as enzyme inhibitors, antibiotics, and anticancer agents. They also have a wide range of antiviral and antifungal properties and are extensively used as insecticides and herbicides.16 The importance of chiral α-aminophosphonates emanates from their increased industrial applications and evident from overwhelming rise in the number of reports on enantioenriched α-aminophosphonic acid derivatives.79 Some racemic a-aminiophosphonates containing fluorine or heterocycle moieties such as thiophene, pyrrole, 1,3,4-thiadiazole and benzothiazole are reported to have potential anticancer properties, with the later one displaying excellent fungicidal activity in addition to antitumour activity.1013 However, further studies are necessary to identify chiral α-aminiophosphonates containing fluorine or heterocycle moieties with potent antitumour activities. Although, diasteroselective addition of phosphite derivatives to chiral imines, enantioselective addition of phosphites to imines in the presence of chiral metal complexes and other methods have been reported for the preparation of optically active α-aminiophosphonates,1425 the need to develop a general practical asymmetric route for their synthesis from achiral acyclic imine and simple dialkyl phosphites still remains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaszay Z M, Nemeth G, Pham T S, et al. Catalytic enantioselective Michael addition in the synthesis of α-aminophosphonates. Tetrahedron: Asymmetry. 2005, 16(23), 3837–3840.

    Article  CAS  Google Scholar 

  2. Smith WW, Bartlett P A.Design, synthesis, and evaluation of an inhibitor bridged between P2 and P1. J. Am. Chem. Soc 1998, 120(19), 4622–4628.

    Article  CAS  Google Scholar 

  3. Song B A, Jiang M G Recent advances in synthesis and biological activity of α-aminophosphonic acids and their esters. Chin. J. Org. Chem 2004, 24(8), 843–856.

    CAS  Google Scholar 

  4. Yang G, Liu Z, Liu J, et al. Synthesis and properties of novel α-(1, 2, 4-triazolo[1, 5-α]pyrimidine-2-oxyl)phosphonate derivatives. Heteroatom Chem 2000, 11(4), 313–316.

    Article  CAS  Google Scholar 

  5. Yager KM, Taylor C M, Smith AB. Asymmetric synthesis ofalpha-aminophosphonates via diastereoselective addition of lithium diethylphosphite to chelating imines. J. Am. Chem. Soc 1994, 116(20), 9377–9378.

    Article  CAS  Google Scholar 

  6. Lefebvre I M, Evans S A J. Studies toward the asymmetric synthesis of α-amino phosphonic acids via the addition of phosphites to enantiopure sulfinimines. J. Org. Chem 1997, 62(22), 7532–7533.

    Article  CAS  Google Scholar 

  7. Davis F A, Lee S, Yan H. et al. Asymmetric synthesis of quaternary α-amino phosphonates using sulfinimines. Org. Lett 2001, 3(11), 1757–1760.

    Article  CAS  Google Scholar 

  8. Sasai H, Arai S, Tahara Y, et al. Catalytic asymmetric synthesis of α-amino phosphonates using lanthanoid-potassium-BINOL complexes. J. Org. Chem 1995, 60(21), 6656–6657.

    Article  CAS  Google Scholar 

  9. Kobayashi S, Kiyohara H, Nakamura Y, et al. Catalytic asymmetric synthesis of α-aminophosphonates using enanti os elective carbon-carbon bond-forming reactions. J. Am. Chem. Soc 2004, 126(21), 6558–6559.

    Article  CAS  Google Scholar 

  10. Groger H, Saida Y, Sasai H, et al. A new and highly efficient asymmetric route to cyclic α-aminophosphonates: the first catalytic en anti o s elective hydrophosphonylation of cyclic imines catalyzed by chiral heterobimetallic lanthanoid complexes. J. Am. Chem. Soc 1998, 120(13), 3089–3103.

    Article  Google Scholar 

  11. Joly G D, Jacobsen E N. Thiourea-catalyzed enantioselective hydro-phosphorylation of imines: practical access to enantiomeric ally enriched α-amino phosphonic acids. J. Am. Chem. Soc 2004, 126(13), 4102–4103.

    Article  CAS  Google Scholar 

  12. Kobayashi S, Kiyohara H, Nakamura Y, et al. Catalytic asymmetric synthesis of α-aminophosphonates using enanti os elective carbon-carbon bond-forming reactions. J.Am. Chem. Soc 2004, 126(21), 6558–6559.

    Article  CAS  Google Scholar 

  13. Hammerschmidt F, Hanbauer M. Transformation of arylmethylamines into α-aminophosphonic acids via metalated phosphoramidates: rearrangement of partly configuration ally stable N-phosphorylated α-aminocarbanions. J. Org. Chem 2000, 65(19), 6121–6131.

    Article  CAS  Google Scholar 

  14. Sasai H, Arai S, Tahara Y, et al. Catalytic asymmetric synthesis of. alpha-amino phosphonates using lanthanoid-potassium-BINOL complexes. J. Org. Chem 1995, 60(21), 6656–6657.

    Article  CAS  Google Scholar 

  15. Petersen D, Marcolini M, Bernardi L, et al. Direct access to enantiomeric ally enriched α-amino phosphonic acid derivatives by organocatalytic asymmetric hydrophosphonylation of imines. J. Org. Chem 2006, 71, 6269–6272.

    Article  CAS  Google Scholar 

  16. Li G, Liang Y, Antilla J C. Vaulted biaryl phosphoric acid-catalyzed reduction of α-imino esters: the highly enantioselective preparation of α-amino esters. J.Am. Chem. Soc 2007, 129(18), 5830–5831.

    Article  CAS  Google Scholar 

  17. Guo Q X, Liu H, Guo C, et ai Chiral bronsted acid-catalyzed direct asymmetric Mannich reaction. J. Am. Chem. Soc 2007, 129(13), 3790–3791.

    Article  CAS  Google Scholar 

  18. Hammerschmidt F, Hanbauer M. Transformation of arylmethylamines into alpha-aminophosphonic acids via metalated phosphoramidates: rearrangements of partly configurationally stable N-phosphorylated alpha-aminocarbanions. J. Org. Chem 2000, 65(l9), 6121–6131.

    Article  CAS  Google Scholar 

  19. Dejugnat C, Etemad-Moghadam G, Rico-Lattes I. Asymmetric synthesis of (α-amino) phosphonic acid amphiphiles using chiral P-H spirophosphoranes. Chem. Commun 2003, 1858–1859.

    Google Scholar 

  20. Gaunt M J, Johansson C C, McNally A, et al. Enantioselective organocatalysis. Drug Discovery Today 2007, 12, 8–27.

    Article  CAS  Google Scholar 

  21. Taylor M S, Jacobsen E N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem. Int. Ed 2006, 45(10), 1520–1543.

    Article  CAS  Google Scholar 

  22. Diner P, Amedjkouh M. Aminophosphonates as organocatalysts in the direct asymmetric aldol reaction, towards syn selectivity in the presence of Lewis bases. Org. Biomol. Chem 2006, 4(11), 2091–2096.

    Article  CAS  Google Scholar 

  23. AkiyamaT, Itoh J, Fuchibe K. Recent progress in chiral Bronsted acid catalysis. Adv. Synth. Catai, 2006, 348(9), 999–1010.

    Article  CAS  Google Scholar 

  24. Connon S J. Chiral phosphoric acids: powerful org ano catalysts for asymmetric addition reactions to imines. Angew Chem.Int.Ed 2006, 45(24), 3909–3912.

    Article  CAS  Google Scholar 

  25. Mukherjee S, List B. Chiral counteranions in asymmetric transition-metal catalysis: highly enantioselective Pd/Bronsted acid-catalyzed direct α-alrylation of aldehydes. JAm.Chem.Soc 2007, 129(37), 11336–11337.

    Article  CAS  Google Scholar 

  26. Wang C, Zhou Z, Tang C. Novel bifunctional chiral thiourea catalyzed highly enantioselective aza-henry reaction. Org. Lett 2008, 10(9), 1707–1717.

    Article  CAS  Google Scholar 

  27. Groger H, Hammer B. Catalytic concepts for the enantioselective synthesis of α-amino and α-hydroxy phosphonates. Chem. Eur. J 2000, 6(6), 943–948.

    Article  CAS  Google Scholar 

  28. Jin L H, Song B A, Zhang G, et al. Synthesis, X-ray crystallographic analysis, and antitumor activity of N-(benzothiazole-2-yl)-l-(fluorophenyl)-0,0-dialky1-α-aminophosphonates. Bioorg & Med. Chem. Lett 2006, 16(6), 1537–1543.

    Article  CAS  Google Scholar 

  29. Zhang G P, Song B A, Xue W, et ai Synthesis and biological activities of novel dialkyl (4-trifluoromethyl-phenylamino)-(4-trifluoromethyl or 3-fluorophenyl)-methylphosphonates. J. Fluorine Chem 2006, 127(1), 48–53.

    Article  CAS  Google Scholar 

  30. Bartoszek M, Beller M, Deutsch J, et ai A convenient protocol for the synthesis of axially chiral Bronsted acids. Tetrahedron 2008, 64(7), 1316–1322.

    Article  CAS  Google Scholar 

  31. Romanenko V D, Kukhar V P. Fluorinated phosphonates, synthesis and biomedical application. Chem. Rev 2006, 106(9), 3868–3935.

    Article  CAS  Google Scholar 

  32. Song B A, Wu Y L, Huang R M. Synthesis of α-aminoalkylphosphonates containing fluorine with antiviral activities for Agricultural plants. CN 1432573, 2003; Patent approval certificate No. ZL02113252.6. Chem Abstr 2005, 142, 482148.

    Google Scholar 

  33. Song B A, Zhang G P, Hu D Y, et al. Preparation methods and use of N-substituted-benzothiazory-l-1-substituted-phenyl-O O-dialkyl-α-aminophosphonate derivatives. CN 1687088, 2005; Patent approval certificate No. ZL0200510003041. 7. Chem Abstr 2006, 145, 145879.

    Google Scholar 

  34. Wipf P, Jung J K. Formal Total Synthesis of (+)-Diepoxin σ. J. Org. Chem.2000, 65(20), 6319–6337.

    Article  CAS  Google Scholar 

  35. Wang Y, Fang X, Ye W, et al. Growth hormones of six new Schiff base. J. Cent China Normal Uni1995, 29, 55–57.

    CAS  Google Scholar 

  36. Hadden M, Nieuwenhuyzen M, Osborne D, et al. Synthesis of the heterocyclic core of martinelline and martinellic acid. Tetrahedron 2006, 62(17), 3977–3984.

    Article  CAS  Google Scholar 

  37. Imhof W, Gobel A, Schweda L, et al. Synthesis and characterization of chiral iron carbonyl complexes from imine ligands with carbohydrates and amino acids as substituents. Polyhedron 2005, 24(18), 3082–3090.

    Article  CAS  Google Scholar 

  38. Jarrahpour A A, Shekarriz M, Taslimi A. Asymmetric synthesis and antimicrobial activity of some new mono and bicyclic β-lactams. Molecules 2004, 9(11), 939–948.

    Article  CAS  Google Scholar 

  39. Flors V, Miralles C, Gonzalez-Bosch C, et al. Three novel synthetic amides of adipic acid protect Capsicum anuum plants against the necrotrophic pathogen Alternaria solani. Physiol. Mol. Plant Pathol 2003, 63(3), 151–158.

    Article  CAS  Google Scholar 

  40. Uraguchi D, Terada M. Chiral bronsted acid-catalyzed direct Mannich reactions via electrophilic activation. J.Am. Chem. Soc 2004, 126(17), 5356–5357.

    Article  CAS  Google Scholar 

  41. Uraguchi D, Sorimachi K, Terada M. Organocatalytic asymmetric aza-Friedel-Crafts alkylation of furan. J. Am. Chem. Soc 2004, 126(38), 11804–11805.

    Article  CAS  Google Scholar 

  42. Akiyama T, Itoh J, Yokota K, et al. Enantio s elective Mannich-type reaction catalyzed by a chiral bronsted acid. Angew. Chem. Int. Ed 2004, 43(12), 1566–1568.

    Article  CAS  Google Scholar 

  43. Bhadury P S, Song B A, Yang S, et al. Some potential chiral catalysts for preparation of asymmetric α-aminophosphonates. Curr. Org. Syn 2008, 5(2), 134–150.

    Article  CAS  Google Scholar 

  44. Akiyama T, Morita H, Itoh J, et al. Chiral Bronsted acid catalyzed enantioselective hydrophosphonylation of imines: asymmetric synthesis of α-amino phosphonates. Org. Lett 2005, 7(13), 2583–2585.

    Article  CAS  Google Scholar 

  45. Akiyama T. Stronger Bronsted acids. Chem. Bev 2007, 107(12), 5744–5758.

    CAS  Google Scholar 

  46. Brunei J M. BINOL: A versatile chiral reagent. Chem. Rev 2005, 105(11), 857–897.

    Article  CAS  Google Scholar 

  47. Lingenfalter D S, Helgeson R C, Cram D J. Host-guest complexation. 23. High chiral recognition of amino acid and ester guests by hosts containing one chiral element. J. Org. Chem 1981, 46(2), 393–406.

    Article  Google Scholar 

  48. Lamberth C, Kempf H J, Kriz M. Synthesis and fungicidal activity of N-2-(3-methoxy-4-propargyloxy) phenethyl amides. Part 3, stretched and heterocyclic mandelamide oomyceticides. Pest Manag. Sei 2007, 63(1), 57–62.

    Article  CAS  Google Scholar 

  49. Song B A, Zhang H P, Yang S, et al. Synthesis and antiviral activity of novel chiral cyanoacrylate Derivatives. J. Agric. Food Chem 2005, 53(20), 7885–7891.

    Article  CAS  Google Scholar 

  50. Gooding G V Jr, Hebert T T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology.1967, 57(11), 1285–1290.

    Google Scholar 

  51. Davis F A, Lee S, Yan H, et al. Asymmetric synthesis of quaternary α-aminophosphonates using sulfinimines. Org. Lett 2001, 3(11), 1757–1760.

    Article  CAS  Google Scholar 

  52. Paula V F D, Barbosa L C D A, Demuner A J, et al. Synthesis and insecticidal activity of new amide derivatives of piperine. PestManag. Sci 2000, 56(2), 168–174.

    Google Scholar 

  53. Jennings L D, Rayner D R, Jordan D B, et al. Cyclobutane carboxamide inhibitors of fugal melanin: biosynthesis and their evaluation as fungicedes. Bioorg. Med. Chem 2000, 8(5), 897–907.

    Article  CAS  Google Scholar 

  54. Witschel M, Zagar C, Hupe E, et al. Synthesis of heteroaroyl-substituted serine amides for use as agricultural herbicides. WO 2006125687, 2006. Chem. Abstr, 2007, 146, 28043.

    Google Scholar 

  55. Navickiene H M D, Miranda J E, Bortoli S A, et al. Toxicity of extracts and isobutyl amides from Piper tuberculatum: potent compounds with potential for the control of the velvetbean caterpillar, Anticarsia gemmatalis. Pest Manag. Sci 2007, 63(4), 399–403.

    Article  CAS  Google Scholar 

  56. Caballero F J, Navarrete C M, Hess S, et al. The acetaminophen-derived bioactive N- acylphenol amine AM404 inhibits NFAT by targeting nuclear regulatory events. Biochem. Pharmacol.2007, 73(7), 1013–1023.

    Article  CAS  Google Scholar 

  57. Zhang H, Lemley A T. J Evaluation of the performance of flow-through anodic Fenton treatment in amide compound degradation. Agric. Food. Chem 2007, 55(10), 4073–4079.

    Article  CAS  Google Scholar 

  58. Dieltiens N, Moonen K, Stevens C V. Enyne metathesis-oxidation sequence for the synthesis of 2-phosphono pyrroles, proof of the “Yne-then-Ene” pathway. Chem. Fur. J 2006, 13(1), 203–214.

    Article  CAS  Google Scholar 

  59. Boukallaba K, Elachqar A, El Hallaoui A, et al. Synthesis of new α-heterocyclic-α-aminophosphonates. Phosphorus, Sulfur and Silicon and the Belated Elements 2006, 181(4), 819–823.

    Article  CAS  Google Scholar 

  60. Olszewski T K, Boduszek B, Sobek S, et al. Synthesis of thiazole aminophosphine oxides, aminophosphonic and aminophosphinic acids and Cu(II) binding abilities of thiazole aminophosphonic acids. Tetrahedron 2006, 62(10), 2183–2189.

    Article  CAS  Google Scholar 

  61. Kafarski P, Lejczak B. Aminophosphonic acids of potential medical importance.Curr. Med. Chem. Anti-Cancer Agents 2001, 1(3), 301–312.

    Article  CAS  Google Scholar 

  62. Lintunen T, Yli-Kauhaluoma J T. Synthesis of aminophosphonate haptens for an aminoacylation reaction between methyl glucoside and α-alanyl ester. Bioorg. Med. Chem. Lett 2000, 10(15), 1749–1750

    Article  CAS  Google Scholar 

  63. Liu W, Rogers C J, Fisher AJ. et al. Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow, tightbinding inhibition. Biochemistry 2002, 41(41), 12320–12328.

    Article  CAS  Google Scholar 

  64. Huang R Q, Wang H, Zhou J. Preparation of organic intermediate. hemical industry press of China, Beijing, China, 2001, 224–225.

    Google Scholar 

  65. Kaboudin B, Moradi K. A simple and convenient procedure for the synthesis of 1-aminophosphonates from aromatic aldehydes. Tetrahedron Lett 2005, 46(17), 2989–2991.

    Article  CAS  Google Scholar 

  66. Bhadury P S, Zhang Y P, Zhang S, et al. An effective route to fluorine containing asymmetric α-aminophosphonates using chiral Bronsted acid catalyst. Chirality 2009, 21(5), 547–557.

    Article  CAS  Google Scholar 

  67. Hu D Y, Wan Q Q, Yang S, et al. Synthesis and antiviral activities of amide derivatives containing α-aminophosphonate moiety. J. Agric Food Chem 2008, 56, 998–1001.

    Article  CAS  Google Scholar 

  68. Huang W, Zhao P L, Liu C L, et al. Design, synthesis, and fungicidal activities of new Strobilurin derivatives. J. Agric. Food Chem 2007, 55(8), 3004–3010.

    Article  CAS  Google Scholar 

  69. Du S C, Faiger H, Belakhov V, et al. Towards the development of novel antibiotics, synthesis and evaluation of a mechanism-based inhibitor of Kdo8P synthase. Bioorg. Med. Chem 1999, 7 (l2), 2671–2682.

    Article  CAS  Google Scholar 

  70. Zomova A M, Molodykh Zh V, Kudryavtseva L A, et al. Antimicrobial activity of O,O-diethyl N-alky laminomethylphosphonates and O-ethyl N-alkyl-aminomethylphosphonic acids. Pharm. Chem. J 1986, 20(11), 774–777.

    Article  Google Scholar 

  71. Kukhar V P, Hudson HR. Aminophosphonic and aminophosphinic acids. Chichester.2000, 559–577.

    Google Scholar 

  72. Zhang G P, Song B A, Yang S, et al. Crystral structrue of N-(4-methyl benzonthiazole-2-yl)-1-(4-trifluoromethyl-phenyl)-O, O- di-n-propyl-α-aminophosphonate.Anal. Sci 2005, 21x, 105–106.

    Google Scholar 

  73. Xu Y S, Yan K, Song B A, et al. Synthesis and antiviral bioactivities of α-aminophosphon ates containing alkoxyethyl moieties. Molecules 2006, 11, 666–616.

    Article  CAS  Google Scholar 

  74. Zideka Z, Kmonickovaa E, Holy A. Cytotoxicity of pivoxil esters of antiviral activity nucleoside phosphonates: adefovir dipivoxil versus adefovir. Biomed Pap. Med Fac. Univ. Palacky. Olomouc. Czech Repub 2005, 149(2), 315–319.

    Google Scholar 

  75. Li S Z, Wang D M, Jiao S M. Pesticide experiment methods-fungicide sector. Agriculture Press of China, Beijing, 1991, 93–94.

    Google Scholar 

  76. Sheldrick G M. Program for empirical absorption correction of area detector data. University of Gottingen: Gottingen, Germany, 1996.

    Google Scholar 

  77. Sheldrick G M. SHELXTL v5.1, Software reference manual; Bruker AXS, Inc. Madison, Wisconsin, USA, 1997.

    Google Scholar 

  78. Wilson A J. International table for X-ray crystallography. Kluwer Academic Publishers, Dordrecht, 1992, vol. C, Tables 6.1.1.4 (pp.500-502) and 4.2.6.8 (pp.219-222), respectively.

    Google Scholar 

  79. Kafarski P, Lejczak B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Anti-Cancer Agents 2001, 1(3), 301–312.

    Article  CAS  Google Scholar 

  80. Lintunen T, Yli-Kauhaluoma J T. Synthesis of aminophosphonate haptens for an aminoacylation reaction between methyl glucoside and α, β-alanyl ester. Bioorg. Med. Chem. Lett 2000, 10(15), 1749–1750

    Article  CAS  Google Scholar 

  81. Liu W, Rogers C J, Fisher A J, etal Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow, tightbinding inhibition. Biochemistry 2002, 41(41), 12320–12328.

    Article  CAS  Google Scholar 

  82. De Lombaert S, Blanchard L, Tan J, et al. Non-peptidic inhibitors of neutral endopeptidase 24.11 1. Discovery and optimization of potency. Bioorg. Med. Chem. Lett 1995, 5(2), 145–150.

    Article  Google Scholar 

  83. Kafarski P, Lejczak B. Biological activity of aminophosphonic acids. Phosphorus, Sulfur and Silicon and the Related Elements 1991, 63(1&2), 193–215.

    Article  CAS  Google Scholar 

  84. Atherton F R, Hassall C H, Lambert R W. Synthesis and structure-activity relationships of antibacterial phosphono-peptides incorporating (1-aminoethyl) phosphonic acid and (aminomethyl)phosphonic acid. J. Mid. Chem 1986, 29(1), 29–40.

    Article  CAS  Google Scholar 

  85. Zhang M H, Li F G. Status quo and opportunity of bromine-contained pesticide (I). Fine Special. Chem 2005, 13(13), 1–4.

    Google Scholar 

  86. Sepulveda-Boza S, Walizei G H, Rezende M C, et al. The preparation of new isoflavones. Synth. Commun 2001, 31(12), 1933–1940.

    Article  CAS  Google Scholar 

  87. Zhao J, Song J Y, Wang Ch, J, et al. Synthesis of 3, 4, 5-trimethoxy-benzoylsolanesylamide. Chin. J. Appl. Chem 2003, 20, 95–97.

    CAS  Google Scholar 

  88. Li D J, Ge Zh H. Synthesis and characterization of 3, 4, 5-trimethoxyl benzylformyl-hydrazones. Chin. J. Syn. Chem 2004, 12(5), 487490.

    Google Scholar 

  89. Ji Y F, Zong Zh M, Wei X Y. Synthesis of 3, 4, 5-trimethoxy benzaldehyde. Chin. J. Appl. Chem 2001, 18(7), 581–583.

    CAS  Google Scholar 

  90. Fields E K. The synthesis of esters of substituted amino phosphonic acids. J. Am. Chem. Soc 1952, 74(6), 1528–1531

    Article  CAS  Google Scholar 

  91. CherkasovR A, Galkin VI. The Kabachnik-Fields reaction: synthetic potential and the problem of the mechanism. Buss. Chem. Bev 1998, 67(10), 857–882.

    Google Scholar 

  92. Mauthner F, Clarke H T Organic synthesis; Gilman, H, Ed, Wiley: New Work, 1941, Coll. Vol 1, 537.

    Google Scholar 

  93. Labouta I M, Hassan, A M, Aboulwafa O M, et al. Synthesis of some substituted benzimidazoles with potential antimicrobial activity. Monatsh. Chem 1989, 120(7), 571–574.

    Article  CAS  Google Scholar 

  94. Cherkasov R A, Galkin V I. Kabachnik-Fields reaction synthetic potential and the problem of mechanism. Usp. Khim 1998, 67, 940–968.

    CAS  Google Scholar 

  95. Maier L, Diel P J. Synthesis, physical and biological properties of the phosphorus analogues of phenylalanine and related compounds. Phosphorus, Sulfur, and Silicon 1994, 90(1–4), 259–279.

    Article  CAS  Google Scholar 

  96. Belciug M P, Modro A M, Modro T A, et al. Phosphonic systems. 6. Dimethyl 2-methylpentenylphosphonates as model for studies of the stability of unsaturated phosphonic esters. Phosphorus, Sulfur, and Silicon 1991, 57(1-2), 57–64.

    Article  Google Scholar 

  97. Allen J G, Atherton F R, Hall M J, et al. Phosphonopeptides, a new class of synthetic antibacterial agents. Nature 1978, 272(5648), 56–59.

    Article  CAS  Google Scholar 

  98. Atherton F R, Hall M J, Hassel C H, et al. Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrobial Agents Chemother 1979, 15(5), 696–705.

    CAS  Google Scholar 

  99. Chen R Y, Dai Q. Syntheses and properties of 2-[bis-(2-chloroethyl)amino]-6-alkoxylmethyl-tetrahydro-2H-1, 3, 2-oxaza-phosphorine-2-oxide. Sci. China Ser. B 1995, 25(2), 591–594.

    Google Scholar 

  100. Engel R. Phosphonates as analogues of natural phosphates. Chem. Bev 1977, 77(3), 349–367.

    CAS  Google Scholar 

  101. Bligh S W A, Choi N, Green D S C. Transition metal complexes of dialkyl α-hydroxyiminophosphonates, a novel class of metal complexes. Polyhedron 1993, 12(23), 2887–2890.

    Article  CAS  Google Scholar 

  102. Cordi P D. Novel aminophenyl phosphonic acid derivatives, process for their preparation and pharmaceutical compositions containing them. EP 754, 693, 1997.

    Google Scholar 

  103. Chen R Y, Mao L J. Synthesis and antitumor activity of novel α-substituted aminomethylphosphonates. Phosphorus, Sulfur, and Silicon 1994, 89(14), 97–104.

    Article  Google Scholar 

  104. Tusek-Bozic L M, Curic M, Balzarini J, et al. Biological activity of some dialkyl α-anilinobenzylphosphonates and their palladium(II) complexes. Nucleosides Nucleotides 1995, 14(3–5), 777–781.

    Article  CAS  Google Scholar 

  105. Song B A, Jiang M G, Wu Y L, et al. Synthesis, structure and bioactivity of N-(p-trifluromethyl) phenyl-α-aminophosphonates. Chin. J. Org. Chem 2003, 23(9), 967–972.

    CAS  Google Scholar 

  106. Yang S, Song B A, Wu YL, et al. Synthesis and crystal structure of fluorine-containing α-aminophosphonates. Chin. J. Org. Chem 2004, 24(10), 1292–1295.

    CAS  Google Scholar 

  107. Yang, S. Studies on synthesis and activities of fluorine compounds with anti-TMV activity and anticancer Activity. Ph. Dr. Disseration, Guizhou University, Guiyang, 2004.

    Google Scholar 

  108. Lee L F, Schleppnik F M, Schneider R W, et al. Synthesis and 13C NMR of (trifluoromethyl) hydroxypyrazoles. J. Heterocycl. Chem 1990, 27, 243–245.

    Article  CAS  Google Scholar 

  109. Bravo P, Diliddo D, Resnati G. An efficient entry to perfluoroalkyl substituted azoles starting from β-perfluoroalkyl-α-dicarbonyl compounds. Tetrahedron 1994, 50(29), 8827–8836.

    Article  CAS  Google Scholar 

  110. Jung J C, Watkins E B, Avery M A. Synthesis of 3-substituted and 3, 4-disubstituted pyrazolin-5-ones. Tetrahedron 2002, 58(18), 3639–3646.

    Article  CAS  Google Scholar 

  111. Kees K L, Fitzgerald J J, Steimer K E, et al. New potent antihyperglycemic agents in db/db mice: synthesis and structure-activity relationship studies of (4-substituted benzyl) (trifluoromethyl) pyrazoles and pyrazolones. J. Med. Chem 1996, 39(20), 3920–3928.

    Article  CAS  Google Scholar 

  112. Gregory T P, Darlene C D, David, M. S. Structure-activity relationships for the action of dihydropyrazole insecticides on mouse brain sodium channels. Pestic. Biochem. Phys 1998, 60(3), 177–185.

    Article  Google Scholar 

  113. Kucukguzel S G, Rollas S, Erdeniz H, et al. Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines. Eur. J. Med. Chem 2000, 35(7–8), 761–771.

    Article  CAS  Google Scholar 

  114. Mutalib A E, Chen S Y, Espina R J, et al. P450-Mediated metabolism of l-[3-(aminomethyl)phenyl]-N-[3-fluoro-2′-(methyl sulfonyl)-[l,l′-biphenyl]-4-yl]-3-(trifluoromethyl)-lH-pyrazole-5-carboxamide (DPC 423) and its analogues to aldoximes. characterization of glutathione conjugates of postulated intermediates derived from aldoximes. Chem. Res. Toxicol 2002, 15(1), 63–75.

    Article  CAS  Google Scholar 

  115. Daidone G, Maggio B, Plescia S, et al. Structure-activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topois orneras e-targeted anticancer agents. Eur. J. Med. Chem 1998, 33(5), 375–382.

    Article  CAS  Google Scholar 

  116. Gamage S A, Spicer J A, Rewcastle G W, et al. Structure-activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J. Med. Chem 2002, 45(3), 740–743.

    Article  CAS  Google Scholar 

  117. Wang Q M, Li Z G, Hung R Q. A convenient synthesis of N-t-butyl-N-amino carbonyl-N-(substituted) benzoyl-hydrazine containing α-aminoalkyl phosphonate groups in a one-pot procedure. Heteroatom Chem 2001, 12(2), 68–72.

    Article  Google Scholar 

  118. Yadav I S, Reddy B V, Madan S C. Montmorillonite clay-catalyzed one-pot synthesis of α-aminophosphonates. Synlett 2001, 7, 1131–1133.

    Article  Google Scholar 

  119. Kaboudin B, Nazari R. Microwave-assisted synthesis of 1-aminoalkyl phosphonates under solvent-free conditions. Tetrahedron Lett 2001, 42(46), 8211–8213.

    Article  CAS  Google Scholar 

  120. Denizot F. Lang, R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89(2), 271–277.

    Article  CAS  Google Scholar 

  121. Skehan P, Storeng R, Scudiero D A. New colorimetric cytotoxicity assay for anticancer-drug screening. Natl. J. Cancer Inst 1990, 82(13), 1107–1112.

    Article  CAS  Google Scholar 

  122. Mccombie H, Sauders B C, Stacey G J. Esters containing phosphorus. Part I. J. Chem. Soc 1945, 380–382.

    Google Scholar 

  123. Kafarski P, Lejczak B, Tyka R, et al. Herbicidal activity of phosphonic, phosphinic, and phosphonous acid analogues ofphenylglycine and phenylalanine. Plant Growth Regulation 1995, 14(4), 199–203.

    Article  CAS  Google Scholar 

  124. Song B A, Zhang G P, Yang S, et al. Synthesis of N-(4-bromo-2-trifluoro-methylphenyl)-l-(2-fluorophenyl)-O,O- dialkyl-α-aminophosphonates under ultrasonic irradiation. Ultrasonics Sonochem 2006, 13(2), 139–142.

    Article  CAS  Google Scholar 

  125. Firouzabadi H, Iranpoor N, Sobhan S I. Metal triflate-catalyzed one-pot synthesis of α-taminophosphonates from carbonyl compounds in the absence of solvent. Synthesis 2004, 16, 2692–2696.

    Article  CAS  Google Scholar 

  126. Manjula A, Vittal B R, Neelakantan P. One-pot synthesis of alpha-aminophosphonates: an inexpensive Approach. Synth. Commun 2003, 33(17), 2963–2969.

    Article  CAS  Google Scholar 

  127. Kaboudin B A. A convenient synthesis of 1-aminophosphonates from 1-hydroxyphosphonates. Tetrhedron Lett 2003, 44(5), 1051–1053.

    Article  CAS  Google Scholar 

  128. Ranu B C, Hajra A. A simple and green procedure for the synthesis of α-aminophosphonate by a one-pot three-component condensation of carbonyl compound, amine and diethyl phosphite without solvent and catalyst. Green Chem 2002, 4(6), 551–554.

    Article  CAS  Google Scholar 

  129. Allen J G, Atherton F R, Hall M J, et al. Phosphonopeptides, a new class of synthetic antibacterial agents. Nature 1978, 272 (5648), 56–59.

    Article  CAS  Google Scholar 

  130. Atherton F R, Hall M J, Hassel C H, et al. Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrobiol Agents Chemother 1979, 15(5), 696–705.

    CAS  Google Scholar 

  131. Bose A K, Manilas M S, Ganguly S N, et al. More chemistry for less pollution: Applications for process development. Synthesis 2002, (11), 1578–1591

    Article  Google Scholar 

  132. b) Vanna R S. Degradtion of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst. Green Chem 1999, (1), 43–55.

    Article  Google Scholar 

  133. Yang S, Gao X W, Diao C L, et al. Synthesis and antifungal activity of novel chiral α-aminophosphonates containing fluorine moiety. Chin. J. Chem 2006, 24, 1581–1588.

    Article  CAS  Google Scholar 

  134. Chattapadhyay T K, Dureja P. Antifungal Activity of 4-Methyl-6-alkyl-2H-pyran-2-ones. J. Agric. Food Chem 2006, 54(6), 2129–2133.

    Article  CAS  Google Scholar 

  135. Fang Z D. Plant pathogen method. Beijing: China Agriculture Press, 1998, 404–407.

    Google Scholar 

  136. Li H S. Plant physiological and biochemical experiment theory and technology. Higher Education Press, Beijing, 2000, 194.

    Google Scholar 

  137. Gu X Y, Hu Z J. A method of mensurating the activity of chitinase. Chin J. Soil Sci 1994, 25(6), 284–285.

    CAS  Google Scholar 

  138. Feng J L. Zhu X F. Molecular biology of microbial chitinase. Journal of Zhejiang University 2004, 130(1), 102–108.

    Google Scholar 

  139. Zhang L X, Zhang T F, Li L Y. Biochemistry techniques and methods (Second edition). Higher Education Press, Beijing, 1997, 1–2.

    Google Scholar 

  140. Liu X J, Chen R Y, Liu Y Y. Synthesis and anticancer activities of novel 5-fluorouracil-1-yl phosphonotripeptides. Chem. J. Chin. Univ 2002, (23), 1299–1303.

    CAS  Google Scholar 

  141. Li Z G, Huang R Q, Yang Z. Synthesis and biological activity of diphenyl N-(2-benzothiazoly 1)-α-aminoalkylphosp honate. Chin. J. Chin. Appl. Chem 1999 16(2), 90–92.

    CAS  Google Scholar 

  142. Long Y X, Zhang K S, Qin D N. Studies on synthesis and biological activity of N-pyrazolinyl-α-aminophosphonates. Chem. J. Chin. Univ 1996, 17(8), 1247–1249.

    CAS  Google Scholar 

  143. Gruss U, Hagele G. Fluorinated N-arylaminoarylmethanephosphonic acids and bisfunctional derivatives. Phosphorus, Sulfur and Silicon 1994, 111(1–4), 159.

    Google Scholar 

  144. Green D S C, Gruss U, Hagele G, et al. The preparation and characterization of some fluorinated α-aminoarylmethanephosphonic acids. Phosphorus, Sulfur andSilicon 1996, 113, 179–207.

    Article  CAS  Google Scholar 

  145. Huang W S, Yuan C Y. A new and convenient one-pot synthesis of α, β-unsaturated trifluoromethyl ketones. Chem. Soc. Perkin Trans 1995, (1), 741–742.

    Google Scholar 

  146. Huang W S, Yuan C Y, Wang Z Q. Facile synthesis of 1-substituted 5-trifluoro-methylimidazole-4-carboxylates. J. Fluorine Chem 1995, 74(2), 279–282.

    Article  CAS  Google Scholar 

  147. Xiao J B, Zhang X M, Yuan C Y. Synthesis of trifluoromethyltetrazoles via building block strategy. J. Fluorine Chem 1999, 99(l), 83–85.

    Article  CAS  Google Scholar 

  148. Abdou I M, Saleh A M, Zohdi H F. Synthesis and antitumor activity of 5-trifluoromethyl-2, 4-dihydropyrazol-3-one nucleosides. Molecules 2004, 9, 109–116.

    Article  CAS  Google Scholar 

  149. Zhao J, Song B A, Yan K, et al. Synthesis, crystal structure and anti-tobacco mosaic virus activity of fluorinated N-phenethyl-α-aminophosphonates. Chin J. Appl. Chem 2007, 24(supp 1), 19–24.

    Google Scholar 

  150. Kenneth L K, John J F, Kurt E S, et al. New potent antihyperglycemic agents in db/db Mice: Synthesis and Structure-Activity Relationship Studies of (4-substituted benzyl)(trifluoromethyl)pyrazoles and pyrazolones. J. Med. Chem 1996, 39(20), 3920–3928.

    Article  Google Scholar 

  151. Kucukguzel S C, Rollas S, Erdeniz H, et al. Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines. Eur. J. Med. Chem 2000, 35(7–8), 761–771.

    Article  CAS  Google Scholar 

  152. Song B A, Yang S, Hong Y P, et al. Synthesis and bioactivity of fluorine compounds containing isoxazolylamino and phosphonate group. J. Fluorine Chem 2005, 126, 1419–1424.

    Article  CAS  Google Scholar 

  153. Li Z G, Huang R Q, Yang Z. Synthesis and biological activity of diphenyl iV-(2-benzothiazoly 1)-α-aminoalkylphosp hon ate. Chin. J. Appl. Chem 1999 16(2), 90–92.

    CAS  Google Scholar 

  154. Gao R Y, Yang G S, Yang H Z, et ai Enantioseparation of fourteen O-ethyl O-phenyl N-isopropyl phosphoroamidothioates by high-performance liquid chromatography on a chiral stationary phase. J. Chromatogr. A, 1997, 763(1–2), 125–128.

    Article  CAS  Google Scholar 

  155. Yang G S, Huang M B, Dai Q, R, et al. Influence of the structure of organic phosphonate compounds on chiral separation on a pirkle type chiral stationary phase. Chromatographia 2001 (53), 93–95.

    Article  CAS  Google Scholar 

  156. Zhou AL, Lv X Y, Xie YX, et al. Chromatographic evaluation of perphenylcarbamoylated β-cyclodextrin bonded stationary phase for micro-high performance liquid chromatography and pressurized capillary electrochromatography. Anal ChimActa 2005, 547(2), 158–164.

    CAS  Google Scholar 

  157. Chen H, Lv X Y, Gao R Y, et al. Separation of chiral phosphorus compounds on the substituted P-cyclodextrin stationary phase in normal-phase liquid chromatography. Chin J. Chem 1999, (17), 644–650.

    CAS  Google Scholar 

  158. Chen H, Lv X Y, Gao R Y, et al. Investigation of retention and chiral recognition mechanism using quantitative structure-enantioselectivity retention relationship in high performance liquid chromatography. Chin J. Chem 2000, (18), 532–536.

    Google Scholar 

  159. Okamoto Y, Kaida Y. Resolution by high-performance liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases. J. Chromatogr. A 1994, 666(1–2), 403–419.

    Article  CAS  Google Scholar 

  160. Yashima E, Okamoto Y. Chiral discrimination on polysaccharides derivatives. Bull. Chem. Soc. Jpn 1995, 68(12), 3289–3307.

    Article  CAS  Google Scholar 

  161. Yashima E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J. Chromatogr. A 2001, 906(1–2), 105–125.

    Article  CAS  Google Scholar 

  162. Tachibaba K, Ohnishi A. Covalentry bonded polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J. Chromatogr. A, 2001, 906(1–2), 127–154.

    Article  Google Scholar 

  163. Frankest E,Ahuja S. Chiral separations, ACS, Washington D C, 1997, Chapter 10, pp. 271.

    Google Scholar 

  164. Song B A, Wu Y L, He X Q, et al. Recent progress in synthesis of novel α-aminophosphonic acid and α-aminophosphonates with optical activity. Chin. J. Org. Chem 2003, 23(9), 933–943.

    CAS  Google Scholar 

  165. Koller H, Rimbock K H, Mannschreck A. J. Chromatogr. A 1983, 282,89.

    Google Scholar 

  166. Wang W, Zhang G P, Song B A, et al. Synthesis and anti-tobacco mosaic virus activity of O,O’- dialkyl-α-(substituted benzothiazol-2-yl)amino-(substituted phenylmethyl)phosphonate. Chin. J. Org. Chem 2007, 27(2), 279-284.

    Google Scholar 

  167. Li C H, Song B A, Yan G F, et al. One Pot Synthesis of α-aminophosphonates containing bromo and 3, 4, 5-trimethoxybenzyl groups under solvent-free conditions. Molecules 2007, 12, 163–172.

    Article  CAS  Google Scholar 

  168. Yang S, Song B A, Hong Y. et al. Synthesis and crystal structure of N-(6-methoxybenzothiazol-2-yl)-1-(4-fluorophenyl)-O,O-dipropyl-α-aminophosphonate. J. Chem. Crystallography 2005, 35(11), 891–895. 2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Chemical Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, B., Jin, L., Yang, S., Bhadury, P.S. (2010). Studies on α-Aminophosphonates with Antiviral Activity. In: Environment-Friendly Antiviral Agents for Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03692-7_2

Download citation

Publish with us

Policies and ethics