Skip to main content

Decoding Color Structured Light Patterns with a Region Adjacency Graph

  • Conference paper
Pattern Recognition (DAGM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5748))

Included in the following conference series:

  • 2565 Accesses

Abstract

We present a new technique for decoding color stripe or color checkerboard patterns as often used for single-shot 3d range data acquisition with structured light. The key idea is to segment the camera image into superpixels with a watershed transform. We then describe a new algorithm that constructs a regions adjacency graph and uses it to solve the correspondence problem. This is an improvement over existing scanline based evaluation methods as the spatial coherence assumption can be relaxed. It allows to measure non-smooth objects that have so far posed problems for single-shot acquisition. The algorithm works in near real time even in uncontrolled environments. Experimental results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognition 37, 827–849 (2004)

    Article  MATH  Google Scholar 

  2. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: a unifying framework for depth from triangulation 27(2), 296–302 (February 2005)

    Google Scholar 

  3. Paterson, K.G.: Perfect maps 40(3), 743–753 (May 1994)

    Google Scholar 

  4. Mitchell, C.J.: Aperiodic and semi-periodic perfect maps 41(1), 88–95 (January 1995)

    Google Scholar 

  5. Horn, E., Kiryati, N.: Toward optimal structured light patterns. In: Proc. International Conference on Recent Advances in 3-D Digital Imaging and Modeling, May 12–15, pp. 28–35 (1997)

    Google Scholar 

  6. Tajima, J., Iwakawa, M.: 3-d data acquisition by rainbow range finder. In: Proc. of the 10th International Conference on Pattern Recognition, vol. 1, pp. 309–313 (1990)

    Google Scholar 

  7. Maruyama, M., Abe, S.: Range sensing by projecting multiple slits with random cuts 15(6), 647–651 (June 1993)

    Google Scholar 

  8. Annexstein, F.: Generating de bruijn sequences: An efficient implementation. IEEE Transactions on Computers 46(2), 198–200 (1997)

    Article  Google Scholar 

  9. Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: Proc. First International Symposium on 3D Data Processing Visualization and Transmission, June 19–21, pp. 24–36 (2002)

    Google Scholar 

  10. Pages, J., Salvi, J., Collewet, C., Forest, J.: Optimised de bruijn patterns for one-shot shape acquisition. Image and Vision Computing 23, 707–720 (2005)

    Article  Google Scholar 

  11. Forster, F.: A high-resolution and high accuracy real-time 3d sensor based on structured light. In: International Symposium on 3D Data Processing Visualization and Transmission, pp. 208–215. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  12. Lucchese, L., Mitra, S.: Color image segmentation: A state-of-the-art survey. In: Proc. of the Indian National Science Academy (INSA-A), March 2001, vol. 67, pp. 207–221 (2001)

    Google Scholar 

  13. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations 13(6), 583–598 (June 1991)

    Google Scholar 

  14. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41(1-2), 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Grady, L.: Space-Variant Computer Vision: A Graph-Theoretic Approach. PhD thesis, Boston University, Boston, MA (2004)

    Google Scholar 

  16. Pitas, I., Tsakalides, P.: Multivariate ordering in color image filtering 1(3), 247–259, 295–6 (September 1991)

    Google Scholar 

  17. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling 44(6), 2743–2760 (October 1998)

    Google Scholar 

  19. Mitchell, C.J., Etzion, T., Paterson, K.G.: A method for constructing decodable de bruijn sequences 42(5), 1472–1478 (September 1996)

    Google Scholar 

  20. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts 23(11), 1222–1239 (November 2001)

    Google Scholar 

  21. http://www.structuredlightsurvey.de (2009)

  22. Osma-Ruiz, V., Godino-Llorente, J., Saenz-Lechon, N., Gomez-Vilda, P.: An improved watershed algorithm based on efficient computation of shortest paths. Pattern Recognition 40(3), 1078–1090 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmalz, C. (2009). Decoding Color Structured Light Patterns with a Region Adjacency Graph. In: Denzler, J., Notni, G., Süße, H. (eds) Pattern Recognition. DAGM 2009. Lecture Notes in Computer Science, vol 5748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03798-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03798-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03797-9

  • Online ISBN: 978-3-642-03798-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics