Skip to main content

Arithmetic Circuits, Monomial Algebras and Finite Automata

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

  • 802 Accesses

Abstract

We study lower bounds for circuit and branching program size over monomial algebras both in the noncommutative and commutative setting. Our main tool is automata theory and the main results are:

  • An extension of Nisan’s noncommutative algebraic branching program size lower bounds [N91] over the free noncommutative ring

    \({\mathbb F}\langle{x_1,x_2,\cdots,x_n}\rangle\) to similar lower bounds over the noncommutative monomial algebras \({\ensuremath{\mathbb{F}}}\langle{x_1,x_2,\cdots,x_n}\rangle/I\) for a monomial ideal I generated by subexponential number of monomials.

  • An extension of the exponential size lower bounds for monotone commutative circuits [JS82] computing the Permanent in ℚ[x 11,x 12, ⋯ ,x nn ] to an exponential lower bound for monotone commutative circuits computing the Permanent in any monomial algebra ℚ[x 11,x 12, ⋯ ,x nn ]/I such that the monomial ideal I is generated by o(n/logn) monomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Corasick, M.J.: Efficient String Matching: An Aid to Bibliographic Search. Commun. ACM 18(6), 333–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arvind, V., Mukhopadhyay, P.: Derandomizing the isolation lemma and lower bounds for circuit size. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 276–289. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Arvind, V., Mukhopadhyay, P., Srinivasan, S.: New results on Noncommutative Polynomial Identity Testing. In: Proc. of Annual IEEE Conference on Computational Complexity, pp. 268–279 (2008)

    Google Scholar 

  4. Bogdanov, A., Wee, H.: More on Noncommutative Polynomial Identity Testing. In: Proc. of 20th Annual Conference on Computational Complexity, pp. 92–99 (2005)

    Google Scholar 

  5. Chien, S., Sinclair, A.: Algebras with polynomial identities and computing the determinant. In: Proc. Annual IEEE Sym. on Foundations of Computer Science, pp. 352–361 (2004)

    Google Scholar 

  6. Hopcroft, J.E., Motawani, R., Ullman, J.D.: Introduction to Automata Theory Languages and Computation, 2nd edn. Pearson Education Publishing Company, London

    Google Scholar 

  7. Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Exponential Complexity? Journal Computer and System Sciences 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jerrum, M., Snir, M.: Some Exact Complexity Results for Straight-Line Computations over Semirings. J. ACM 29(3), 874–897 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kabanets, V., Impagliazzo, R.: Derandomization of polynomial identity test means proving circuit lower bounds. In: Proc. of 35th ACM Sym. on Theory of Computing, pp. 355–364 (2003)

    Google Scholar 

  10. Koch, R., Blum, N.: Greibach Normal Form Transformation. In: STACS, pp. 47–54 (1997)

    Google Scholar 

  11. Klivans, A., Spielman, D.A.: Randomness efficient identity testing of multivariate polynomials. In: STOC 2001, pp. 216–223 (2001)

    Google Scholar 

  12. Mahajan, M., Vinay, V.: A Combinatorial Algorithm for the Determinant. In: SODA 1997, pp. 730–738 (1997)

    Google Scholar 

  13. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching Is as Easy as Matrix Inversion. In: STOC 1987, pp. 345–354 (1987)

    Google Scholar 

  14. Nisan, N.: Lower bounds for noncommutative computation. In: Proc. of 23rd ACM Sym. on Theory of Computing, pp. 410–418 (1991)

    Google Scholar 

  15. Rosenkrantz, D.J.: Matrix equations and normal forms for context-free grammars. J. ACM (14), 501–507 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non commutative models. Computational Complexity 14(1), 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Toda, S.: Counting Problems Computationally Equivalent to the Determinant (manuscript)

    Google Scholar 

  18. Vinay, V.: Counting Auxiliary Pushdown Automata and Semi-unbounded Arithmetic Circuits. In: Proc. 6th Structures in Complexity Theory Conference, pp. 270–284 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arvind, V., Joglekar, P.S. (2009). Arithmetic Circuits, Monomial Algebras and Finite Automata. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics