Skip to main content

Microbes in Aerobic and Anaerobic Waste Treatment

  • Chapter
  • First Online:
Microbes at Work

Abstract

This chapter gives an overview of the materials and chemical compounds that are the subject of microbial degradation under both aerobic and anaerobic conditions. Bacteria, fungi, and archaea that are responsible for degradation or for specific phases of a degradation process are indicated. Special attention is given to two major processes of organic waste recycling involving microorganisms – composting and anaerobic digestion for biogas production. The use of classical and novel tools for investigating the involved microbiota is discussed. Also, aspects of nutrient and greenhouse gas balances are addressed. The chapter concludes by emphasizing that with microbial action, an environmentally sound recycling of organic residues is possible, and that this should be encouraged by waste management policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander M (1977) Introduction to soil microbiology. Wiley, New York

    Google Scholar 

  • Alfreider A, Peters S, Tebbe CC, Rangger A, Insam H (2002) Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci Util 10:303–312

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Bagge E, Sahlström L, Albihn A (2005) The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Res 39:4879–4886

    Article  CAS  PubMed  Google Scholar 

  • Balk M, Weijma J, Stams AJM (2002) Thermotoga lettingae, sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Balk M, Weijma J, Friedrich MW, Stams AJM (2003) Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. Arch Microbiol 179:315–320

    CAS  PubMed  Google Scholar 

  • Bastida F, Hernández T, García C (2010) Soil degradation and rehabilitation: microorganisms and functionality. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 253–270

    Google Scholar 

  • Beffa T, Blanc M, Lyon PF, Vogt G, Marchiani M, Fischer JL, Aragno M (1996) Isolation of Thermus strains from hot composts (60 to 80 degrees C). Appl Environ Microbiol 62:1723–1727

    CAS  PubMed  Google Scholar 

  • Bonin AS, Boone DR (2006) The order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 3. Springer, New York, pp 231–243

    Google Scholar 

  • Boone DR, Chynoweth DP, Mah RA, Smith PH, Wilkie AC (1993) Ecology and microbiology of biogasification. Biomass Bioenerg 5:191–202

    Article  CAS  Google Scholar 

  • Braun R, Drosg B, Bochmann G, Weiß S, Kirchmayr R (2010) Recent developments in bio-energy recovery through fermentation. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, New York, pp 35–58

    Google Scholar 

  • Briones A, Raskin L (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14:270–276

    Article  CAS  PubMed  Google Scholar 

  • Browne CA (1933) The spontaneous heating and ignition of hay and other agricultural products. Science 77:223–229

    Article  CAS  PubMed  Google Scholar 

  • Bruns MA, Hanson JR, Mefford J, Scow KM (2001) Isolate PM1 populations are dominant and novel methyl tert-butyl ether-degrading bacteria in compost biofilter enrichments. Environ Microbiol 3:220–225

    Article  CAS  PubMed  Google Scholar 

  • Cabanas-Vargas DD, Stentiford EI (2006) Oxygen and CO2 profiles and methane formation during the maturation phase of composting. Compost Sci Util 14:86–89

    CAS  Google Scholar 

  • Chachkhiani M, Dabert P, Abzianidze T, Partskhaladze G, Tsiklauri L, Dudauri TGJJ (2004) 16S rDNA characterisation of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure. Bioresource Technol 93:227–232

    Article  CAS  PubMed  Google Scholar 

  • Chen AC, Ueda K, Sekiguchi Y, Ohashi A, Harada H (2003) Molecular detection and direct enumeration of methanogenic archaea and methanotrophic bacteria in domestic solid waste landfill soils. Biotechnol Lett 25:1563–1569

    Article  CAS  PubMed  Google Scholar 

  • Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115

    Article  CAS  PubMed  Google Scholar 

  • Chynoweth DP, Pullammanappallil P (1996) Anaerobic digestion of municipal solid wastes. In: Palmisano AC, Barlaz MA (eds) Microbiology of solid wastes. CRC Press, Florida, pp 71–114

    Google Scholar 

  • Collins G, Woods A, McHugh S, Carton MW, O’Flaherty V (2003) Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiol Ecol 46:159–170

    Article  CAS  PubMed  Google Scholar 

  • Collins G, Kavanagh S, McHugh S, Connaughton S, Kearney A, Rice O, Carrig C, Scully C, Bhreathnach N, Mahony T, Madden P, Enright AM, O’Flaherty V (2006) Accessing the black box of microbial diversity and ecophysiology: Recent advances through polyphasic experiments. J Environ Sci Health A 41:897–922

    CAS  Google Scholar 

  • Connaughton S, Collins G, O’Flaherty V (2006) Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18°C. Water Res 40:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Cook KSG, Sayler GS (2003) Environmental application of array technology: promise, problems and practicalities. Curr Opin Biotechnol 14:311–318

    Article  CAS  PubMed  Google Scholar 

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    Article  PubMed  Google Scholar 

  • Danon M (2008) Suppression of Sclerotium rolfsii in compost: characterization and function of the microbial populations. The Hebrew University of Jerusalem. PhD thesis

    Google Scholar 

  • Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144

    Article  CAS  PubMed  Google Scholar 

  • de Bertoldi M, Vallini G, Pera A, Zucconi F (1982) Comparison of three windrow compost systems. BioCycle 23(2):45–50

    Google Scholar 

  • de Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manag Res 1:157–176

    Google Scholar 

  • Dees PM, Ghiorse WC (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216

    Article  CAS  PubMed  Google Scholar 

  • Delbes C, Moletta R, Godon JJ (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction-single-strand conformation polymorphism analysis. Environ Microbiol 2:506–515

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anarobic conversion biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    Article  CAS  Google Scholar 

  • Dighe AS, Shouche YS, Ranade DR (1998) Selenomonas lipolytica sp. nov., an obligately anaerobic bacterium possessing lipolytic activity. Int J Syst Bacteriol 48:783–791

    Article  PubMed  Google Scholar 

  • Domínguez J, Aira M, Gómez-Brandón M (2010) Vermicomposting: earthworms enhance the work of microbes. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 93–114

    Google Scholar 

  • Drake HL, Küsel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 2. Springer, New York, USA, pp 354–420

    Google Scholar 

  • Eicker A (1981) The occurrence and nature of sulphur crystals in phase I mushroom compost. Mushroom Sci 11:27–34

    CAS  Google Scholar 

  • Eylar OR, Schmidt RL (1959) A survey of heterotrophic microorganisms from soil for ability to form nitrite and nitrate. J Gen Microbiol 20:473–481

    CAS  PubMed  Google Scholar 

  • Farrelly V, Rainey FA, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    CAS  Google Scholar 

  • Felske A, Wolterink A, Van Lis R, De Vos WM, Akkermans ADL (2000) Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes. Appl Environ Microbiol 66:3998–4003

    Article  CAS  PubMed  Google Scholar 

  • Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65:3697–3704

    PubMed  Google Scholar 

  • Finstein MS, Morris ML (1975) Microbiology of municipal solid waste composting. Adv Appl Microbiol 19:113–151

    Article  CAS  PubMed  Google Scholar 

  • Focht DD, Chang AC (1975) Nitrification and denitrification processes related to waste water treatment. Adv Appl Microbiol 19:153–186

    Article  CAS  PubMed  Google Scholar 

  • Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC (2006) Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol 71:942–952

    Article  CAS  PubMed  Google Scholar 

  • Francou C, Poitrenaud M, Houot S (2005) Stabilization of organic matter during composting: influence of process and feedstocks. Compost Sci Util 13:72–83

    Google Scholar 

  • Franke-Whittle IH, Klammer SH, Insam H (2005) Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J Microbiol Methods 62:37–56

    Article  CAS  PubMed  Google Scholar 

  • Franke-Whittle IH, Knapp BA, Fuchs J, Kaufmann R, Insam H (2009a) Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb Ecol 57:510–521

    Article  CAS  PubMed  Google Scholar 

  • Franke-Whittle IH, Goberna M, Pfister V, Insam H (2009b) Design and development of the ANAEROCHIP microarray for investigation of methanogenic communities. J Microbiol Methods 79:279–288

    Google Scholar 

  • Friedrich M, Springer N, Ludwig W, Schink B (1996) Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int J Syst Bacteriol 46:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Fuchs JG (2010) Interactions between beneficial and harmful micro-organisms: from the composting process to compost application. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 213–230

    Google Scholar 

  • Gallert C, Winter J (2005) Bacterial metabolism in wastewater treatment systems. In: Jördening HJ, Winter J (eds) Environmental biotechnology. Concepts and applications. Wiley-VCH Verlag Gmbh & Co KGaA, Weinheim, pp 1–48

    Google Scholar 

  • García JL, Ollivier B, Whitman WB (2006) The order Methanomicrobiales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 3. Springer, New York, pp 208–230

    Google Scholar 

  • Goberna M, Franke-Whittle IH, Insam H (2008) Fingerprinting the microbial communities in organic wastes using oligonucleotide microarrays and real-time PCR. In: Abstract volume of the II international meeting of soil enzimology. Recycling of organic wastes in environmental restoration and global change. Burgos, Spain, p 36

    Google Scholar 

  • Goberna M, Insam H, Franke-Whittle IH (2009) Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl Environ Microbiol 75:2566–2572

    Article  CAS  PubMed  Google Scholar 

  • Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Microbial 16S rDNA diversity in an anaerobic digester. Water Sci Technol 36:49–55

    CAS  Google Scholar 

  • Green SJ, Michel FC Jr, Hadar Y, Minz D (2004) Similarity of bacterial communities in sawdust- and straw-amended cow manure composts. FEMS Microbiol Lett 233:115–123

    Article  CAS  PubMed  Google Scholar 

  • Griffin DM (1985) A comparison of the roles of bacteria and fungi. In: Leadbetter ER, Poindexter JS (eds) Bacteria in nature, vol 1. Plenum Publishing, London, pp 221–255

    Google Scholar 

  • Guschin DY, Mobarry BK, Proudnikov D, Stahl DA, Rittmann BE, Mirzabekov AD (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63:2397–2402

    CAS  PubMed  Google Scholar 

  • Harmsen HJM, Wullings B, Akkermans ADL, Ludwig W, Stams AJM (1993) Phylogenetic analysis of Syntrophobacter woliniii reveals a relationship with sulphate-reducing bacteria. Arch Microbiol 160:238–240

    CAS  PubMed  Google Scholar 

  • Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73:4119–4127

    Article  CAS  PubMed  Google Scholar 

  • Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2008) Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Appl Environ Microbiol 74:3610–3614

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    CAS  PubMed  Google Scholar 

  • He PJ, Lu F, Shao LM, Zhang H (2009) Characterization of methanogenesis using stable isotopic probing. Prog Chem 21:540–549

    Google Scholar 

  • Hirsch P, Overrein L, Alexander M (1961) Formation of nitrite and nitrate by actinobacteria and fungi. J Bacteriol 82:442–448

    CAS  PubMed  Google Scholar 

  • Hora TS, Iyengar MRS (1960) Nitrification by soil fungi. Arch Mikrobiol 35:252–257

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Huang LN, Chen YQ, Zhou H, Luo S, Lan CY, Qu LH (2003) Characterization of methanogenic archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177

    Article  CAS  PubMed  Google Scholar 

  • Hultman J, Kurola J, Raininsalo A, Kontro M, Romantschuk M (2010) Utility of molecular tools for optimization of large scale composting. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 135–152

    Google Scholar 

  • Ianotti EL, Fischer JR, Sievers DM (1982) Characterization of bacteria from a swine manure digester. Appl Environ Microbiol 43:136–143

    Google Scholar 

  • Innerebner G, Knapp B, Vasara T, Romantschuk M, Insam H (2006) Traceability of ammonia-oxidising bacteria in compost-treated soils. Soil Biol Biochem 38:1092–1100

    Article  CAS  Google Scholar 

  • Insam H, de Bertoldi M (2007) Microbiology of the composting process. In: Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) Compost science and technology. Elsevier, Amsterdam, pp 25–48

    Chapter  Google Scholar 

  • Insam H, Wett B (2008) Control of GHG emission at the microbial community level. Waste Manage 28:699–706

    Article  CAS  Google Scholar 

  • Jäckel U, Thummes K, Kämpfer P (2005) Thermophilic methane production and oxidation in compost. FEMS Microbiol Ecol 52:175–184

    Article  PubMed  CAS  Google Scholar 

  • Juste A, Thomma BPHJ, Lievens B (2008) Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol 25:745–761

    Article  CAS  PubMed  Google Scholar 

  • Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:331–338

    Article  CAS  PubMed  Google Scholar 

  • Kendall MM, Boone DR (2006) The order Methanosarcinales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 3. Springer-Verlag, New York, USA, pp 244–256

    Google Scholar 

  • Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B (2008) Characterization of the methanogenic archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 31:190–205

    Article  CAS  PubMed  Google Scholar 

  • Knapp B, Ros M, Insam H (2010) Do composts affect the soil microbial community? In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 271–292

    Google Scholar 

  • Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fibre degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693

    Article  CAS  PubMed  Google Scholar 

  • Krause L, Diaz NN, Edwards RA, Gartemann K-H, Krömeke H, Neuweger H, Pnhler A, Runte KJ, Schlnter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor: genome research in the light of ultrafast sequencing technologies. J Biotechnol 136:91–101

    Article  CAS  PubMed  Google Scholar 

  • Laloui-Carpentier W, Li T, Vigneron V, Mazéas L, Bouchez T (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Anton Leeuw Int J G 89:423–434

    Article  Google Scholar 

  • LaPara TM, Nakatsu CH, Pantea LM, Alleman JE (2002) Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res 36:638–646

    Google Scholar 

  • Leclerc M, Delgènes JP, Godon JJ (2004) Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol 6:809–819

    Article  CAS  PubMed  Google Scholar 

  • Levén L, Eriksson ARB, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

    Article  PubMed  CAS  Google Scholar 

  • Liesack W, Stackebrandt E (1992) Unculturable microbes detected by molecular sequences and probes. Biodivers Conserv 1:250–262

    Article  Google Scholar 

  • Liu WT, Marsh TL, Cheung H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  PubMed  Google Scholar 

  • Liu WT, Chan CO, Fang HH (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res 36:3203–3210

    CAS  PubMed  Google Scholar 

  • Loehr RC (1974) Agricultural waste management. Academic, New York, USA

    Google Scholar 

  • Lott Fischer J (1998) Avoidance of biorisks of composting by thermohygienization: influence of the type of system and management on the occurrence of the potentially pathogenic mold Aspergillus fumigatus and fecal indicator bacteria. Thesis, Université de Neuchâtel, Switzerland

    Google Scholar 

  • Loy A, Bodrossy L (2006) Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta 363:106–119

    Article  CAS  PubMed  Google Scholar 

  • Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer K-H, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microb 68:5064–5081

    Article  CAS  Google Scholar 

  • Lueders T, Friedrich MW (2003) Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69:320–326

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:507–577

    Google Scholar 

  • Macario AJL, Conway de Macario E (1988) Quantitative inmunologic analysis of the methanogenic microflora of digestors reveals considerable diversity. Appl Environ Microbiol 54:79–86

    CAS  PubMed  Google Scholar 

  • Macedo AJ, Timmis KN, Wolf-Rainer A (2007) Widespread capacity to metabolize polychlorinated biphenyls by diverse microbial communities in soils with no significant exposure to PCB contamination. Environ Microbiol 9:1890–1897

    Article  CAS  PubMed  Google Scholar 

  • Madsen EL (2006) The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Curr Opin Biotechnol 17:92–97

    Article  CAS  PubMed  Google Scholar 

  • Malin C, Illmer P (2008) Ability of DNA content and DGGE analysis to reflect the performance condition of an anaerobic biowaste fermenter. Microbiol Res 163:503–511

    Article  CAS  PubMed  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  • Marshall KC, Alexander M (1962) Nitrification by Aspergillus flavus. J Bacteriol 83:572–578

    Article  CAS  PubMed  Google Scholar 

  • McHugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219:297–304

    Article  CAS  PubMed  Google Scholar 

  • McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions – II: microbial population dynamics. Water Res 35:1817–1827

    Article  CAS  PubMed  Google Scholar 

  • McMahon KD, Zheng D, Stams AJM, Mackie RI, Raskin L (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng 87:823–834

    Article  CAS  PubMed  Google Scholar 

  • Michel FC Jr, Marsh TJ, Reddy CA (2002) Bacterial community structure during yard trimmings composting. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer-Verlag, Heidelberg, pp 25–42

    Google Scholar 

  • Minz D, Green SJ, Ofek M, Hadar Y (2010) Compost microbial populations and interactions with plants. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 231–252

    Google Scholar 

  • Mladenovska Z, Dabrowski S, Ahring B (2003) Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis. Water Sci Technol 48:271–278

    CAS  PubMed  Google Scholar 

  • Monis PT, Giglio S (2006) Nucleic acid amplification-based techniques for pathogen detection and identification. Infect Genet Evol 6:2–12

    Article  CAS  PubMed  Google Scholar 

  • Montero B, Morales JL, Sales D, Solera R (2008) Evolution of microorganisms in thermophilic-dry anaerobic digestion. Bioresource Technol 99:3233–3243

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Mountfort DO, Brulla WJ, Krumholz LR, Bryant MP (1984) Syntrophus buswellii gen. nov. sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34:216–217

    Article  Google Scholar 

  • Moyer CL, Dobbs FC, Karl DM (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 60:871–879

    CAS  PubMed  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of Polymerase Chain Reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  • Nakashimada Y, Srinivasan K, Murakami M, Nishio N (2000) Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol Lett 22:223–227

    Article  CAS  Google Scholar 

  • Nishida T, Fujimura T, Omasa T, Katakura Y, Suga K-I, Shioya S (2003) Changes in microflora duding composting of an aquatic plant, Brazilian elodea. J Chem Eng Jpn 36:1201–1205

    Article  CAS  Google Scholar 

  • Nocker A, Burr M, Camper A (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  CAS  PubMed  Google Scholar 

  • Ntougias S, Zervakis GI, Kavroulakis N, Ehaliotis C, Papadopoulou KK (2004) Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. Syst Appl Microbiol 27:746–754

    Article  CAS  PubMed  Google Scholar 

  • O’Flaherty V, Collins G, Mahony T (2006) The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Rev Environ Sci Biotechnol 5:39–55

    Article  CAS  Google Scholar 

  • Ortega-Charleston L (2008) Hyperthermophilic anaerobic digestion of food waste. PhD Thesis, McGill University, Montreal

    Google Scholar 

  • Pedro MS, Haruta S, Hazaka M, Shimada R, Yoshida C, Hiura K, Ishii M, Igarashi Y (2001) Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter. J Biosci Bioeng 91:159–165

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    Article  CAS  Google Scholar 

  • Plugge CM, van Lier JB, Stams AJM (2010) Syntrophic communities in methane formation from high strength wastewaters. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer-Verlag, New York, pp 59–78

    Google Scholar 

  • Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    CAS  PubMed  Google Scholar 

  • Qiu Y-L, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y (2008) Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol 74:2051–2058

    Article  CAS  PubMed  Google Scholar 

  • Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257

    Article  CAS  PubMed  Google Scholar 

  • Raskin L, Poulsen LK, Noguera DR, Rittmann B, Stahl DA (1994a) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60:1241–1248

    CAS  PubMed  Google Scholar 

  • Raskin L, Stromley JM, Rittmann B, Stahl DA (1994b) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    CAS  PubMed  Google Scholar 

  • Ren Z, Ward TE, Logan BE, Regan JM (2007) Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J Appl Microbiol 103:2258–2266

    Article  CAS  PubMed  Google Scholar 

  • Rincón B, Raposo F, Borja R, González JM, Portillo MC, Saiz-Jiménez C (2006) Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phases olive mill solid wastes at low organic loading rates. J Biotechnol 121:534–543

    Article  PubMed  CAS  Google Scholar 

  • Roest K, Altinbas M, Paulo PL, Heilig HGHJ, Akkermans ADL, Smidt H, de Vos WM, Stams AJM (2005a) Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor. Microb Ecol 50:440–446

    Article  CAS  PubMed  Google Scholar 

  • Roest K, Heilig HGHJ, Smidt H, deVos WM, Stams AJM, Akkermans ADL (2005b) Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl Microbiol 28:175–185

    Article  CAS  PubMed  Google Scholar 

  • Roller C, Wagner M, Amann R, Ludwig W, Schleifer K-H (1994) In situ probing of Gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology 140:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • Ros M, Klammer S, Knapp B, Aichberger K, Insam H (2006) Long term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag 22:209–218

    Article  Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Sahlström L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource Technol 87:161–166

    Article  PubMed  Google Scholar 

  • Sahlström L, Aspan A, Bagge E, Danielsson-Tham ML, Albihn A (2004) Bacterial pathogen incidences in sludge from Swedish sewage treatment plants. Water Res 38:1989–1994

    Article  PubMed  CAS  Google Scholar 

  • Sarada R, Joseph R (1994) Characterization and enumeration of microorganisms associated with anaerobic digestion of tomato-processing waste. Bioresource Technol 49:261–265

    Article  CAS  Google Scholar 

  • Sawayama S, Tsukahara K, Yagishita T (2006) Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Bioresource Technol 97:69–76

    Article  CAS  PubMed  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  Google Scholar 

  • Schink B, Stams AJM (2006) Syntrophism among prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 2. Springer-Verlag, New York, USA, pp 309–335

    Google Scholar 

  • Schloss PD, Hay AG, Wilson DB, Walker LP (2003) Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol Ecol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  • Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann K-H, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pnhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology: genome research in the light of ultrafast sequencing technologies. J Biotechnol 136:77–90

    Article  PubMed  CAS  Google Scholar 

  • Schmitz RA, Daniel R, Deppenmeier U, Gottschalk G (2006) The anaerobic way of life. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 2. Springer-Verlag, New York, USA, pp 86–101

    Google Scholar 

  • Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152

    Article  PubMed  Google Scholar 

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  CAS  PubMed  Google Scholar 

  • Scully C, Collins G, O’Flaherty V (2005) Assessment of anaerobic wastewater treatment failure using terminal restriction fragment length polymorphism analysis. J Appl Microbiol 99:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi Y (2006) Yet-to-be cultured microorganisms relevant to methane fermentation process. Microbes Environ 21:1–15

    Article  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Gyamfi S, Stralis-Pavese N, Weilharter A, Pfeifer U (2002) RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocols. J Microbiol Methods 51:171–179

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Hagen JC (1995) Isolation and characterization of Clostridium hobsonii comb. nov. Bioresource Technol 51:61–74

    Article  CAS  Google Scholar 

  • Shigematsu T, Tang Y, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, Morimura S, Kida K (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96:547–558

    Article  CAS  PubMed  Google Scholar 

  • Small J, Call DR, Brockman FJ, Straub TM, Chandler DP (2001) Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol 67:4708–4716

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15:150–155

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Hubbard H, Huber D (2004) Archaeal diversity of a thermophilic methanogenic pilot scale digester treating poultry farm waste. In: Proceedings of the 10th Anaerobic Digestion Conference, Montréal, Canada, 1574–1577

    Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Kolganova TV, Bonch-Osmolovskaya EA (2002) Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967

    Article  CAS  PubMed  Google Scholar 

  • Sokolova TG, González JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxideoxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359

    Article  CAS  PubMed  Google Scholar 

  • Sousa DZ (2006) Ecology and physiology of anaerobic microbial communities that degrade long chain fatty acids. PhD Thesis, Universidade do Minho

    Google Scholar 

  • Sousa DZ, Pereira MA, Smidt H, Stams AJM, Alves MM (2007) Molecular assessment of complex microbial communities degrading long-chain fatty acids in methanogenic bioreactors. FEMS Microbiol Ecol 60:252–265

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new heirarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Stams AJM, Elferink SJWHO, Westermann P (2003) Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. In: Sheper T (ed) Advances in biochemical engineering/biotechnology. Springer-Verlag, Berlin, pp 31–56

    Google Scholar 

  • Stams AJM, de Bok FAM, Plugge CM, van Eekert JD, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

    Article  CAS  PubMed  Google Scholar 

  • Strom PF (1985) Effect of temperature on bacterial diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905

    CAS  PubMed  Google Scholar 

  • Suzuki M, Giovannoni S (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed  Google Scholar 

  • Talbot G, Roy C, Topp E, Palin MF, Massé D (2004) Monitoring microbial diversity and function in swine manure anaerobic digesters by length heterogeneity PCR (LH-PCR). In: Anaerobic Digestion 10th World Congress Proceedings, Aug 29th–Sept 2nd, Montreal, vol 3, pp 1594–1598

    Google Scholar 

  • Talbot G, Topp E, Palin MF, Masse DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42:513–537

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Shigematsu T, Ikbal MS, Kida K (2004) The effects of micro-aeration on the phylogenic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Shigematsu T, Morimura S, Kida K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99:150–164

    Google Scholar 

  • Tarlera S, Muxí L, Soubes M, Stams AJM (1997) Calaromator proteoclasticus sp. nov., a new moderately thermophilic anareobic proteolytic bacterium. Int J Syst Bacteriol 47:651–656

    Article  CAS  PubMed  Google Scholar 

  • Thummes K, Kämpfer P, Jäckel U (2007a) Temporal change of composition and potential activity of the thermophilic archaeal community during the composting of organic material. Syst Appl Microbiol 30:418–429

    Article  CAS  PubMed  Google Scholar 

  • Thummes K, Schäfer J, Kämpfer P, Jäckel U (2007b) Thermophilic methanogenic archaea in compost material: occurrence, persistence and possible mechanisms for their distribution to other environments. Syst Appl Microbiol 30:634–643

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM (2005) Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles. Environ Technol 26:1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Torsvik VL, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  PubMed  Google Scholar 

  • Ueno Y, Haruta S, Ishii M, Igarashi Y (2001) Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor. Appl Microbiol Biot 57:65–73

    Article  CAS  Google Scholar 

  • US-EPA (Environmental Protection Agency) (2006) Anaerobic digestion: benefits for waste management, agriculture, energy and environment. Available at: http://www.dcmnr.gov.ie/NR/rdonlyres/287C17F6-13D2-48B9-882C-2060512A573E/0/EPAappendix.pdf. Accessed 26 July 2006

  • Vinnerås B, Schönning C, Nordin A (2006) Identification of the microbiological community in biogas systems and evaluation of microbial risks from gas usage. Sci Total Environ 367:606–615

    Article  PubMed  CAS  Google Scholar 

  • Vinnerås B, Agostini F, Jönsson H (2010) Sanitation by composting. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 171–192

    Google Scholar 

  • Vogels GD, Van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev 40:403–468

    CAS  PubMed  Google Scholar 

  • Wagner R (1994) The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 161:100–109

    Article  CAS  PubMed  Google Scholar 

  • Waksman SA (1932) Principles of soil microbiology. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Wang LF, Rakela J, Laskus T (1997) Head-to-tail primer tandem repeats generated in hemi-nested PCR. Mol Cell Probes 11:385–387

    Article  CAS  PubMed  Google Scholar 

  • Ward DM, Bateson MM, Weller R, Ruff-Roberts AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microb Ecol 12:219–286

    CAS  Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technol 99:7928–7940

    Article  CAS  PubMed  Google Scholar 

  • Wéry N, Lhoutellier C, Ducray F, Delgenès JP, Godon JJ (2008) Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res 42:53–62

    Article  PubMed  CAS  Google Scholar 

  • Wett B, Insam H (2010) Biogas technology: Controlled gas flow for enhanced mixing, heating, and desulfurization. In: Insam H, Franke-Whittle IH, Goberna M (eds) Microbes at work. From wastes to resources. Springer, Heidelberg, pp 79–92

    Google Scholar 

  • Whitehead TR, Cotta MA (1999) Phylogenetic diversity of methanogenic archaea in swine waste storage pits. FEMS Microbiol Lett 179:223–226

    Article  CAS  PubMed  Google Scholar 

  • Whitman W, Jeanthon C (2006) Methanococcales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 3. Springer-Verlag, New York, USA, pp 257–273

    Google Scholar 

  • Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann New York Acad Sci 1125:289–297

    Article  CAS  Google Scholar 

  • Yamada T, Miyauchi K, Ueda H, Ueda Y, Sugawara H, Nakai Y, Endo G (2007) Composting cattle dung wastes by using a hyperthermophilic pre-treatment process: characterization by physicochemical and molecular biological analysis. J Biosci Bioeng 104:408–415

    Article  CAS  PubMed  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry: energy biotechnology/environmental biotechnology. Curr Opin Biotechnol 18:213–219

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424–433

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, He P-J, Lü F, Shao L-M, Wang P (2007) Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Water Res 41:4468–4478

    Article  CAS  PubMed  Google Scholar 

  • Zhao HW, Viraraghavan T (2004) Analysis of the performance of an anaerobic digestion system at the Regina wastewater treatment plant. Bioresource Technol 95:301–307

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Raskin L (2000) Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes. Microb Ecol 39:246–262

    CAS  PubMed  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferrry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Springer-Verlag, New York, pp 128–206

    Google Scholar 

  • Zinder SH, Koch M (1984) Non-acetoclastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272

    Article  CAS  Google Scholar 

  • Zinder SH, Cardwell SC, Anguish T, Lee M, Koch M (1984) Methanogenesis in a thermophilic anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl Environ Microbiol 47:796–807

    CAS  PubMed  Google Scholar 

  • Zumstein E, Moletta R, Godon JJ (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol 2:69–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Marta Goberna acknowledges support from the Spanish Ministerio de Educación y Ciencia (EX-2006-0094) and from the European Union through the Marie Curie Actions (MEIF-CT-2006-041034). We would like to acknowledge the support of The Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Austria for funding the projects FP200010 and P16560 and the Tiroler Zukunftsstiftung (K-Regio Center BioTreaT). We thank M. Danon for providing Fig. 1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heribert Insam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Insam, H., Franke-Whittle, I., Goberna, M. (2010). Microbes in Aerobic and Anaerobic Waste Treatment. In: Insam, H., Franke-Whittle, I., Goberna, M. (eds) Microbes at Work. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04043-6_1

Download citation

Publish with us

Policies and ethics