Skip to main content

Modeling of Micro-Piezoelectric Motion Platform for Compensation and Neuro-PID Controller Design

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5754))

Included in the following conference series:

Abstract

The purpose of this study is to design a tracking controller for micro-piezoelectric motion platform applications. The hysteresis effect is originated from the piezoelectric actuated platform that provides nonlinear behaviors. A Prandtl-Ishlinskii model is constructed to describe the hysteresis behavior of piezoelectric actuators. The weights of hysteresis model are identified by using the LMS(Least-Mean-Square) algorithm. Based on the Prandtl-Ishlinskii model, a feed-forward controller is developed for compensating the hysteresis nonlinearity. A self-tuning neuro-PID controller is introduced to suppress the tracking errors due to the modeling inaccuracy and hence to get precision tracking errors. These approaches are numerically and experimentally verified which demonstrate the performance and applicability of the proposed designs under a variety of operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, J.D., Nam, S.R.: Apiezoelectrically driven micro-positioning system for the ductile-mode griding of brittle materials. Journal of Materials Processing Technology 61, 309–319 (1999)

    Article  Google Scholar 

  2. Chen, B.M., Lee, T.H., Hang, C.C., Guo, Y., Weerasorriya, S.: An H ∞ almost disturbance decoupling robust controller design for a piezoceramic bimorph actuator with Hysteresis. IEEE Transaction on Control System Technology 7(2), 160–173 (1999)

    Article  Google Scholar 

  3. Adriaens, H.J.M.T.A., Koning, W.L.D., Banning, R.: Modeling piezoelectric actuators. IEEE/ASME Transactions on mechatronics 5(4), 331–341 (2000)

    Article  Google Scholar 

  4. Reinder, B., de Willem, L., Han, K., Adriaens, J.M.T.A., Richard, K.: Koops: “State-space analysis and identification for a class of hysteretic systems”. Automatica 37, 1883–1892 (2001)

    Article  MATH  Google Scholar 

  5. Kim, J.D., Nam, S.R.: A piezoelectrically driven micro-positioning system for the ductile-mode griding of brittle materials. Journal of Materials Processing Technology 61, 309–319 (1999)

    Article  Google Scholar 

  6. Michael, G., Nikola, C.: Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Systems Magazine 17, 69–79 (1997)

    Article  Google Scholar 

  7. Yu, Y., Naganathan, N., Dukkipati, R.: Preisach modeling of Hysteresis for piezoceramic actuators system. Mechanism and Machine Theory 37, 49–59 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ru, C.H., Sun, L., Kong, M.X.: Adaptive inverse control for piezoelectric actuator based on hysteresis model. In: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3189–3193 (2005)

    Google Scholar 

  9. Jan, C., Hwang, C.L.: Robust control design for a piezoelectric actuator system with dominant hysteresis. In: IEEE Int. Conf. on Industrial Electronics, Control and Instrumentation, Nagoya, Japan, pp. 1515–1520 (2000)

    Google Scholar 

  10. Tao, G., Kokotovic, P.V.: Adaptive control of plants with unknown hysteresis. IEEE Trans. Automatic Control 40(2), 200–212 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ku, S.S., Pinsopon, U., Cetinkunt, S., Nakajima, S.I.: Design, Fabrication, and Real-Time Neural Network Control of a Three-Degrees-of-Freedom Nanopositioner. IEEE/ASME Transactions on Mechatronics 5(3), 273–280 (2000)

    Article  Google Scholar 

  12. Hwang, C.L., Jan, C.: A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis. IEEE Trans. Neural Networks 14(1), 66–78 (2003)

    Article  Google Scholar 

  13. Ang, W.T., Riviere, C.N., Khosla, P.K.: Feedforward Controller with Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory Tracking Applications. ASME/IEEE Transactions on Mechatronics 12(2), 1–8 (2007)

    Article  Google Scholar 

  14. Tan, U.X., Win, T.L., Ang, W.T.: Modeling Piezoelectric Actuator Hysteresis with Singularity Free Prandtl-Ishlinskii Model. In: IEEE International Conference on Robotics and Biomimetics, Kunming, China, pp. 251–256 (2006)

    Google Scholar 

  15. Tan, U.X., Win, T.L., Tanjaya, M., Wirawan, H.T., Shee, C.Y., Ang, W.T.: Real-Time Disturbance Compensation with Accelerometers & Piezoelectric-Driven Mechanism. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, Florida, USA (2007)

    Google Scholar 

  16. Yamamoto, T., Kaneda, M., Oki, T., Watanabe, E., Tanaka, K.: Intelligent tuning PID controllers. In: IEEE International on Systems, Man and Cybernetics, Intelligent Systems for the 21st Century, vol. 3, pp. 2610–2615 (1995)

    Google Scholar 

  17. Omatu, S., Yoshioka, M.: Self-Tuning Neuro-PID Control and Applications. In: IEEE International Conference on System, Man, and Cybernetics, vol. 3, pp. 1985–1989 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Vt., Chen, Mj., Yang, Wc. (2009). Modeling of Micro-Piezoelectric Motion Platform for Compensation and Neuro-PID Controller Design. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2009. Lecture Notes in Computer Science, vol 5754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04070-2_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04070-2_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04069-6

  • Online ISBN: 978-3-642-04070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics