Skip to main content

Unsteady Transonic Fluid - Structure - Interaction at the BAC 3-11 High Aspect Ratio Swept Wing

  • Conference paper
Summary of Flow Modulation and Fluid-Structure Interaction Findings

Abstract

A comprehensive analysis of experimental results from several wind tunnel test campaigns is presented. The experiments were conducted in the subproject B6 of the Collaborative Research Center SFB 401. The main focus of this research is the interaction of unsteady aerodynamic phenomena in transonic flow over a supercritical BAC 3-11/RES/30/21 high aspect ratio swept wing configuration in the context of aeroelastic instabilities occurring at modern transport type wing configurations. The fluid-structure-interaction is simulated using a simplified aeroelastic test setup with harmonic forcing in the bending and torsional wing degree of freedom. The interaction between shock wave and turbulent separation is the most essential feature in the unsteady wing flow leading to a distinct self-induced oscillation of the flow field. Flow cases with incipient separation and with full scale shock induced separation at Mach numbers 0.86 and 0.92 are compared showing the interference effects of self-induced shock oscillations with the harmonically oscillating wind tunnel model. The results demonstrate the self-limiting nature of the unsteady flow with incipient separation and the aeroelastic coupling in the presence of shock induced separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendiksen, O.O.: Energy Approach to Flutter Suppression and Aeroelastic Control. J. Guidance, Control, and Dynamics 24(1), 176–184 (2001)

    Article  Google Scholar 

  2. Lee, B.H.K., Price, S.J., Wong, Y.S.: Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Progr. Aerosp. Sci. 35, 205–334 (1999)

    Article  Google Scholar 

  3. Thomas, J.P., Dowell, E.H., Hall, K.C.: Non-linear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit Cycle Oscillations. AIAA J. 40(4), 638–646 (2002)

    Article  Google Scholar 

  4. Schewe, G., Mai, H., Dietz, G.: Nonlinear Effects in Transonic Flutter with Emphasis on Manifestations of Limit Cycle Oscillations. J. Fluids Structures 18, 3–22 (2003)

    Article  Google Scholar 

  5. Dietz, G., Schewe, G., Mai, H.: Experiments on Heave/Pitch Limit Cycle Oscillations of a Supercritical Airfoil Close to the Transonic Dip. J. Fluids Structures 19, 1–16 (2004)

    Article  Google Scholar 

  6. Thomas, J.P., Dowell, E.H., Hall, K.C.: Transonic limit cycle oscillation analysis using reduced order aerodynamic models. J. Fluids Structures 19, 17–27 (2004)

    Article  Google Scholar 

  7. Bendiksen, O.O.: Transonic Limit Cycle Flutter/LCO. In: 45th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, California, April 19 - 22, AIAA-Paper 2004-1694 (2004)

    Google Scholar 

  8. Dietz, G., Schewe, G., Mai, H.: Amplification and amplitude limitation of heave/pitch limit cycle oscillations close to the transonic dip. J. Fluids Structures 22, 505–527 (2006)

    Article  Google Scholar 

  9. Tijdeman, H.: Investigation on the Transonic Flow around Oscillating Airfoils. PhD thesis, NLR TR 77090 U, TU Delft, The Netherlands (1977)

    Google Scholar 

  10. Hillenherms, C., Schröder, W., Limberg, W.: Experiments on Transonic Aerodynamics about Elastically Suspended Airfoils. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 84, pp. 351–376 (2003)

    Google Scholar 

  11. Hillenherms, C., Schröder, W., Limberg, W.: Experimental investigation of a pitching airfoil in transonic flow. Aerosp. Sci. Technol. 8(7), 569–671 (2004)

    Article  Google Scholar 

  12. Hillenherms, H.C.: Experimental Investigation of a Supercritical Airfoil Oscillating in Pitch at Transonic Flow. Doctoral thesis D82, RWTH Aachen University, Shaker, Aachen, Germany (2003)

    Google Scholar 

  13. Bendiksen, O.O.: Transonic Limit Cycle Flutter of High-Aspect-Ratio Swept Wings. J. Aircraft 45(5), 1522–1533 (2008)

    Article  Google Scholar 

  14. Dietz, G., Schewe, G., Kießling, F., Sinapius, M.: Limit-Cycle-Oscillation Experiments At a Transport Aircraft Wing Model. In: CEAS/AIAA/NWL Int. Forum on Aeroelasticity and Structural Dynamics (IFASD), Amsterdam, The Netherlands (2003)

    Google Scholar 

  15. Steimle, P.C., Schröder, W., Althaus, W.: Forced Oscillations of a Supercritical Swept Wing in Transonic Flow. In: 13th Intl. Conf. on Methods of Aerophysical Research (ICMAR), Novosibirsk, Russian Federation (2007)

    Google Scholar 

  16. Steimle, P.C., Schröder, W., Limberg, W.: Transonic shock boundary-layer interaction on an oscillating high aspect ratio swept wing. In: AIAA/CEAS/KTH Intl. Forum on Aeroelasticity and Structural Dynamics, Stockholm, Sweden (2007)

    Google Scholar 

  17. Steimle, P.C., Schröder, W., Klaas, M.: Transonic Shock Buffet Interference of an Oscillating High Aspect Ratio Swept Wing. In: 26th AIAA App. Aerodyn. Conf., Honolulu, Hawaii, USA, AIAA-Paper 2008-6908 (2008)

    Google Scholar 

  18. Romberg, H.-J.: Two-dimensional wall adaption in the transonic wind tunnel of the AIA. J. Aircraft 38(4), 177–180 (1990)

    Google Scholar 

  19. Amecke, J.: Direkte Berechnung von Wandinterferenzen und Wandadaption bei zweidimensionaler Strömung in Windkanälen mit geschlossenen Wänden (in German). DFVLR-FB 85-62 (1985)

    Google Scholar 

  20. Binion, T.W.: Potentials for Pseudo-Reynolds Number Effects. Reynolds Number Effects in Transonic Flow. AGARDograph No. 303 (1988)

    Google Scholar 

  21. Moir, I.R.M.: Measurements on a two-dimensional aerofoil with high-lift devices. AGARD Advisory Report 303, DRA, Farnborough, United Kingdom (1994)

    Google Scholar 

  22. Tijdeman, H.: Theoretical and experimental results for the dynamic response of pressure measuring systems. NLR-TR F.238 (1965)

    Google Scholar 

  23. Burner, A.W., Liu, T.: Videogrammetric Model Deformation Measurement Technique. J. Aircraft 38(4), 745–754 (2001)

    Article  Google Scholar 

  24. Graves, S.S., Burner, A.W., Edwards, J.W., Schuster, D.M.: Dynamic Deformation Measurements of an Aeroelastic Semispan Model. AIAA-Paper 2001-2454

    Google Scholar 

  25. Asai, K., Kanda, H., Cunningham, C.T., Erausquin, R., Sullivan, J.P.: Surface pressure measurements in a cryogenic wind tunnel by using luminescent coatings. In: 17th Int. Congr. Instrumentation in Aerospace Simulation Facilities (ICIASF), September 28 - October 2 (1997)

    Google Scholar 

  26. Bell, J.H., Schairer, E.T., Hand, L.A., Mehta, R.D.: Surface Pressure Measurements Using Luminescent Coatings. Ann. Rev. Fluid Mech. 33, 155–206 (2001)

    Article  Google Scholar 

  27. Klein, C.: Application of Pressure Sensitive Paint (PSP) for the determination of the instantaneous pressure field of models in a wind tunnel. Aerosp. Sci. Technol 4, 103–109 (2000)

    Article  Google Scholar 

  28. Sakaue, H., Gregory, J.W., Sullivan, J.P.: Porous Pressure-Sensitive Paint for Characterizing Unsteady Flow Fields. AIAA J. 40(6), 1094–1098 (2002)

    Article  Google Scholar 

  29. Sakaue, H., Sullivan, P.: Time Response of Anodized Aluminum Pressure-Sensitive Paint. AIAA J. 39(10), 1944–1949 (2001)

    Article  Google Scholar 

  30. Kameda, M., Tezuka, N., Hangai, T., Asai, K., Nakakita, K., Amao, Y.: Adsorptive pressure-sensitive coatings on porous anodized aluminium. Meas. Sci. Technol. 15, 489–500 (2004)

    Article  Google Scholar 

  31. Amao, Y., Asai, K., Okura, I.: Photoluminiscent oxygen sensing using palladium tetrakis(4-carboxyphenyl)porphyrin self-assembled membrane on alumina. Anal. Commun. 36, 179–180 (1999)

    Article  Google Scholar 

  32. Merienne, M.-C., Le Sant, Y., Ancelle, J., Soulevant, D.: Unsteady pressure measurement instrumentation using anodized aluminium PSP applied in a transonic wind tunnel. Meas. Sci. Technol. 15, 2349–2360 (2004)

    Article  Google Scholar 

  33. Kawakami, T., Tabei, T., Kameda, M., Nakakita, K., Asai, K.: Unsteady pressure-field measurements by a fast-responding PSP on porous anodized aluminium. In: Proc. 11th Int. Symp. on Flow Visualization, Paper No. 217 (2004)

    Google Scholar 

  34. Rueckert, D., Sonda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Transactions on Medical Images 18(8) (1999)

    Google Scholar 

  35. Meyer, C.R., Boes, J.L., Kim, B., Bland, P.H., Zasaduy, K.R., Kison, P.V., Koral, K., Frey, K.A., Wahl, R.L.: Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Medical Image Analysis 1(3), 195–207 (1997)

    Article  Google Scholar 

  36. Christensen, G.E., Müller, M.I., Mars, J.L., Vaunier, M.W.: Automatic analysis of medical images using a deformable textbook. In: Computer Assisted Radiology, pp. 146–151. Springer, Berlin (1995)

    Google Scholar 

  37. Bro-Nielsen, M.: Fast fluid registration of medical images. In: Proc. 4th Int. Conf. Visualization in Biomedical Computing (VBC), pp. 267–276 (1996)

    Google Scholar 

  38. Steimle, P.C., Karhoff, D.-C., Nakata, S., Schröder, W.: Unsteady Anodized Aluminum Pressure-Sensitive Paint Measurements on a High Aspect Ratio Swept Wing in Transonic Flow. In: Intl. Forum on Aeroelasticity and Structural Dynamics (IFASD), Seattle, Washington, USA, June 21-25 (2009)

    Google Scholar 

  39. Pearcey, H.H., Osborne, J., Haines, A.B.: The Interaction between Local Effects at the Shock and Rear Separation - A Source of Significant Scale Effects in Wind-Tunnel Tests on Aerofoils and Wings. AGARD-CP-35, 11-1 – 11-23 (1968)

    Google Scholar 

  40. Délery, J., Marvin, J.G.: Shock-Wave Boundary Layer Interactions. AGARDograph (280), 90–108 (1986)

    Google Scholar 

  41. Délery, J.M.: Shock wave / turbulent boundary layer interaction and its control. Progr. Aerosp. Sci. 22, 209–280 (1985)

    Article  Google Scholar 

  42. Naughton, J.W., Sheplak, M.: Modern Developments in Shear-stress Measurement. Progr. Aerosp. Sci. 38, 515–570 (2002)

    Article  Google Scholar 

  43. Meijering, A., Schröder, W., Limberg, W.: Aerodynamic Design of an Adaptive Airfoil at Transonic Speeds. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 84, pp. 85–104 (2003)

    Google Scholar 

  44. Ting, C.-C., Henze, A., Schröder, W.: Heat Transfer Measurements in Supersonic Flow Using the Liquid Crystal Display Technique. AIAA-Paper 2002-5200 (2002)

    Google Scholar 

  45. Inger, G.R.: Analytical Investigation of Swept Shock-Turbulent Boundary Layer Interaction in Supersonic Flow. In: AIAA 17th Fluid Dynamics, Plasma Dynamics, and Laser Conference, June 25-27, AIAA-Paper 1984-1555 (1984)

    Google Scholar 

  46. Stanewsky, E.: Shock boundary layer interaction. In: Boundary Layer Simulation and Control in Wind Tunnels, AGARD-AR-224, pp. 271–305 (1988)

    Google Scholar 

  47. Brunet, V., Deck, S., Jacquin, L., Molton, P.: Transonic Buffet Investigations Using Experimental and DES Techniques. In: 7th ONERA-DLR Aerospace Symposium ODAS 2006, Toulouse, France. ONERA-TP-2006-165 (2006)

    Google Scholar 

  48. Lee, B.H.K.: Self-sustained shock oscillations on airfoils at transonic speeds. Progr. Aerosp. Sci. 37, 147–196 (2001)

    Article  Google Scholar 

  49. Deck, S.: Numerical Simulation of Transonic Buffet over a Supercritical Airfoil. AIAA J. 43(7), 1556–1566 (2005)

    Article  Google Scholar 

  50. Finke, K.: Stoßschwingungen in schallnahen Strömungen (in German). VDI-Forschungsheft 580, VDI-Verlag, Düsseldorf, Germany (1977)

    Google Scholar 

  51. Schewe, G., Knipfer, A., Mai, H., Dietz, G.: Experimental and numerical investigation of nonlinear effects in transonic flutter. German Aerospace Center internal report DLR-IB 232-2002 J 01 (2002)

    Google Scholar 

  52. Dor, J.B., Mignosi, A., Seraudie, A., Benoit, B.: Wind Tunnel Studies of Natural Shock Wave – Separation Instabilities for Transonic Airfoil Tests. In: Zierep, J., Oertel, H. (eds.) Symposium Transonicum III, IUTAM Symposium Göttingen, Germany (1988)

    Google Scholar 

  53. Xiao, Q., Tsai, H.M.: Numerical Study of Transonic Buffet on a Supercritical Airfoil. AIAA J. 44(3), 620–628 (2006)

    Article  Google Scholar 

  54. Geissler, W.: Numerical study of buffet and transonic flutter on the NLR 7301 airfoil. Aerosp. Sci. Technol. 7(77), 540–550 (2003)

    Article  MATH  Google Scholar 

  55. Bendiksen, O.O.: Effect of Wing Deformations and Sweep on Transonic Limit Cycle Flutter of Flexible Wings. In: AIAA/CEAS/KTH Int. Forum on Aeroelasticity and Structural Dynamics, Stockholm, Sweden (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steimle, P.C., Schröder, W., Klaas, M. (2010). Unsteady Transonic Fluid - Structure - Interaction at the BAC 3-11 High Aspect Ratio Swept Wing. In: Schröder, W. (eds) Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04088-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04088-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04087-0

  • Online ISBN: 978-3-642-04088-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics