Skip to main content

Musical Instruments in Random Forest

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5722))

Included in the following conference series:

Abstract

This paper describes automatic classification of predominant musical instrument in sound mixes, using random forests as classifiers. The description of sound parameterization applied and methodology of random forest classification are given in the paper. Additionally, the significance of sound parameters used as conditional attributes is investigated. The results show that almost all sound attributes are informative, and random forest technique yields much higher classification results than support vector machines, used in previous research on these data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Aty, M., Pande, A., Das, A., Knibbe, W.: Assessing Safety on Dutch Freeways with Data from Infrastructure-Based Intelligent Transportation Systems. Transp. Res. Rec. 2083, 153–161 (2008)

    Article  Google Scholar 

  2. Bureau, A., Dupuis, J., Falls, K., Lunetta, K., Hayward, B., Keith, T., Eerdewegh, P.: Identifying SNPs Predictive of Phenotype Using Random Forests. Gen. Epidem. 28 (2005)

    Google Scholar 

  3. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001), http://www.stat.berkeley.edu/~breiman/RandomForests/cc_papers.htm

    Article  MATH  Google Scholar 

  4. Carr, D.A., Lach-Hab, M., Yang, S.J., Vaisman, I.I., Blaisten-Barojas, E.: Machine learning approach for structure-based zeolite classification. Micropor. Macropor. Mat. 117, 339–349 (2009)

    Article  Google Scholar 

  5. Cosi, P., De Poli, G., Lauzzana, G.: Auditory Modelling and Self-Organizing Neural Networks for Timbre Classification. J. New Music Research 23, 71–98 (1994)

    Article  Google Scholar 

  6. Diaz-Uriarte, R., Alvarez de Andres, S.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3 (2006)

    Article  Google Scholar 

  7. Dziubinski, M., Dalka, P., Kostek, B.: Estimation of musical sound separation algorithm effectiveness employing neural networks. J. Intel. Inf. Syst. 24(2-3), 133–157 (2005)

    Article  Google Scholar 

  8. Fujinaga, I., McMillan, K.: Realtime recognition of orchestral instruments. In: Proceedings of the International Computer Music Conference, pp. 141–143 (2000)

    Google Scholar 

  9. Goto, M.: A real-time music-scene-description system: predominant-f0 estimation for detecting melody and bass lines in real-world audio signals. ISCA 43(4), 311–329 (2004)

    Google Scholar 

  10. Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: International Symposium on Music Information Retrieval ISMIR (2000)

    Google Scholar 

  11. ISO: MPEG-7 Overview, http://www.chiariglione.org/mpeg/

  12. Kaminskyj, I.: Multi-feature Musical Instrument Classifier. MikroPolyphonie 6 (2000)

    Google Scholar 

  13. Klapuri, A.: Signal processing methods for the automatic transcription of music. Ph.D. thesis, Tampere University of Technology, Finland (2004)

    Google Scholar 

  14. Kursa, M., Jankowski, A., Rudnicki, W.: Boruta – a system for feature selection. In: Nguyen, H.S., Huynh, V.N. (eds.) SCKT-08 Hanoi Vietnam (PRICAI 2008), pp. 122–133 (2009)

    Google Scholar 

  15. Lunetta, K.L., Hayward, L.B., Segal, J., Eerdewegh, P.V.: Screening Large-Scale Association Study Data: Exploiting Interactions Using Random Forests. BMC Genetics 5, 32 (2004)

    Article  Google Scholar 

  16. Martin, K.D., Kim, Y.E.: 2pMU9. Musical instrument identification: A pattern-recognition approach. 136 meeting Acoustical Soc. America, Norfolk, VA (1998)

    Google Scholar 

  17. Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)

    Google Scholar 

  18. Rudnicki, W., Kierczak, M., Koronacki, J., Komorowski, J.: A Statistical Method for Determining Importance of Variables in an Information System. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 557–566. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Strobl, C., Boulesteix, A., Zeileis, A., Hothorn, T.: Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007)

    Article  Google Scholar 

  20. Strobl, C., Zeileis, A.: Danger: High Power! – Exploring the Statistical Properties of a Test for Random Forest Variable Importance. Tech. Rep.17. Univ. Munich (2008)

    Google Scholar 

  21. Strobl, C., Boulesteix, A.-L., Kneib, T., Augistin, T., Zeileis, A.: Conditional Variable Importance for Random Forests. Tech. Rep. 23. Dept. Stat., Univ. of Munich (2008)

    Google Scholar 

  22. Ward, M.M., Pajevic, S., Dreyfuss, J., Malley, J.D.: Short-Term Prediction of Mortality in Patients with Systemic Lupus Erythematosus: Classification of Outcomes Using Random Forests. Arthritis and Rheumatism 55, 74–80 (2006)

    Article  Google Scholar 

  23. Wieczorkowska, A., Kubera, E., Kubik-Komar, A.: Analysis of Recognition of a Musical Instrument in Sound Mixes Using Support Vector Machines. In: Nguyen, H.S., Huynh, V.N. (eds.) SCKT 2008 Hanoi, Vietnam (PRICAI 2008), pp. 110–121 (2008)

    Google Scholar 

  24. Wieczorkowska, A.: Rough Sets as a Tool for Audio Signal Classification. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS (LNAI), vol. 1609. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Xie, Y.Y., Li, X., Ngai, E.W.T., Ying, W.Y.: Customer churn prediction using improved balanced random forests. Expert Syst. Appl. 36, 5445–5449 (2009)

    Article  Google Scholar 

  26. Zhang, X.: Cooperative Music Retrieval Based on Automatic Indexing of Music by Instruments and Their Types. Ph.D thesis, Univ. North Carolina, Charlotte (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., Kubik-Komar, A. (2009). Musical Instruments in Random Forest. In: Rauch, J., RaÅ›, Z.W., Berka, P., Elomaa, T. (eds) Foundations of Intelligent Systems. ISMIS 2009. Lecture Notes in Computer Science(), vol 5722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04125-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04125-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04124-2

  • Online ISBN: 978-3-642-04125-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics