Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5750))

Abstract

Rule-based modelling has already proved to be successful for taming the combinatorial complexity, typical of cellular signalling networks, caused by the combination of physical protein-protein interactions and modifications that generate astronomical numbers of distinct molecular species. However, traditional rule-based approaches, based on an unstructured space of agents and rules, remain susceptible to other combinatorial explosions caused by mutated and/or splice variant agents, that share most but not all of their rules with their wild-type counterparts; and by drugs, which must be clearly distinguished from physiological ligands.

In this paper, we define a syntactic extension of Kappa, an established rule-based modelling platform, that enables the expression of a structured space of agents and rules that allows us to express mutated agents, splice variants, families of related proteins and ligand/drug interventions uniformly. This also enables a mode of model construction where, starting from the current consensus model, we attempt to reproduce in numero the mutational—and more generally the ligand/drug perturbational—analyses that were used in the process of inferring those pathways in the first place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor. J. Biol. Chem. 274(42), 30169–30181 (1999)

    Article  Google Scholar 

  2. Kiyatkin, A., Aksamitiene, E., Markevich, N.I., Borisov, N.M., Hoek, J.B., Kholodenko, B.N.: Scaffolding protein GAB1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J. Biol. Chem. 281, 19925–19938 (2006)

    Article  Google Scholar 

  3. Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., Kolch, W.: Computational modelling of the receptor tyrosine kinase activated MAPK pathway. Biochemical Journal 392(2), 249–261 (2005)

    Article  Google Scholar 

  4. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.-D., Müller, G.: Computational modeling of the dynamics of the map kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20, 370–375 (2002)

    Article  Google Scholar 

  5. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for Modeling Signal-Transduction Systems. Science’s STKE 2006(344) (2006)

    Google Scholar 

  6. Maslov, S., Ispolatov, I.: Propagation of large concentration changes in reversible protein-binding networks. Proceedings of the National Academy of Sciences 104(34), 13655–13660 (2007)

    Article  Google Scholar 

  7. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific Press, Singapore (2001)

    Google Scholar 

  8. Regev, A., Shapiro, E.: Cells as computation. Nature 419 (September 2002)

    Google Scholar 

  9. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters (2001)

    Google Scholar 

  10. Baldi, C., Degano, P., Priami, C.: Causal π-calculus for biochemical modeling. In: Proceedings of the AI*IA Workshop on BioInformatics 2002, pp. 69–72 (2002)

    Google Scholar 

  11. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Cardelli, L.: Brane Calculi Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theoretical Computer Science 325, 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. John, M., Ewald, R., Uhrmacher, A.M.: A Spatial Extension to the π Calculus. Electronic Notes in Theoretical Computer Science, vol. 194(3), pp. 133–148 (2008)

    Google Scholar 

  15. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. Electronic Notes in Theoretical Computer Science, vol. 194(3), pp. 103–117 (2008)

    Google Scholar 

  17. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

    Article  Google Scholar 

  18. Dematte, L., Priami, C., Romanel, A.: The BlenX language: a tutorial. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Blinov, M.L., Faeder, J.R., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3292 (2004)

    Article  Google Scholar 

  20. Dematté, L., Priami, C., Romanel, A., Soyer, O.: Evolving BlenX programs to simulate the evolution of biological networks. Theoretical Computer Science 408(1), 83–96 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract Interpretation of Cellular Signalling Networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling of Cellular Signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable Simulation of Cellular Signaling Networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Murphy, L.O., Smith, S., Chen, R.H., Fingar, D.C., Blenis, J.: Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 4(8), 556–564 (2002)

    Google Scholar 

  26. Burgess, A.W., Cho, H.S., Eigenbrot, C., Ferguson, K.M., Garrett, T.P.J., Leahy, D.J., Lemmon, M.A., Sliwkowski, M.X., Ward, C.W., Yokoyama, S.: An Open-and-Shut Case? Recent Insights into the Activation of EGF/ErbB Receptors. Molecular Cell 12(3), 541–552 (2003)

    Article  Google Scholar 

  27. Zhang, X., Gureasko, J., Shen, K., Cole, P.A., Kuriyan, J.: An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor. Cell 125(6), 1137–1149 (2006)

    Article  Google Scholar 

  28. Sampaio, C., Dance, M., Montagner, A., Edouard, T., Malet, N., Perret, B., Yart, A., Salles, J., Raynal, P.: Signal strength dictates phosphoinositide 3-kinase contribution to Ras/extracellular signal-regulated kinase 1 and 2 activation via differential Gab1/Shp2 recruitment: consequences for resistance to epidermal growth factor receptor inhibition. Mol. Cell Biol. 28(2), 587–600 (2008)

    Article  Google Scholar 

  29. Zhang, X., Pickin, K.A., Bose, R., Jura, N., Cole, P.A., Kuriyan, J.: Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450(7170), 741 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J. (2009). Rule-Based Modelling and Model Perturbation. In: Priami, C., Back, RJ., Petre, I. (eds) Transactions on Computational Systems Biology XI. Lecture Notes in Computer Science(), vol 5750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04186-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04186-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04185-3

  • Online ISBN: 978-3-642-04186-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics