Skip to main content

Identifying Disease-Related Biomarkers by Studying Social Networks of Genes

  • Chapter
Innovations in Swarm Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 248))

  • 1445 Accesses

Abstract

Identifying cancer biomarkers is an essential research problem that has attracted the attention of several research groups over the past decades. The main target is to find the most informative genes for predicting cancer cases, such genes are called cancer biomarkers. In this chapter, we contribute to the literature a new methodology that analysis the communities of genes to identify the most representative ones to be considered as biomarkers. The proposed methodology employs iterative t-test and singular value decomposition in order to produce the communities of genes which are analyzed further to identify the most prominent gene within each community; the latter genes are analyzed further as cancer biomarkers. The proposed methods have been applied on three microarray datasets. The reported results demonstrate the applicability and effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal, A., Siegel, R., Ward, E., Xu, T., Thun, M.J.: Cancer statistics. A Cancer Journal for Clinicians 57, 43–66 (2007)

    Article  Google Scholar 

  2. Butte, A.: The use and analysis of microarray data. Nature Reviews 1, 951–960 (2002)

    Article  Google Scholar 

  3. Dembele, D., Kastner, P.: Fuzzy c-means method for clustering microarray data. Bioinformatics 19, 973–980 (2003)

    Article  Google Scholar 

  4. Kohonen, T.: Self-organizing paps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)

    Google Scholar 

  5. Golub, T.R., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lender, E.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  6. Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University (July 2003)

    Google Scholar 

  7. Toura, A., Basu, M.: Application of neural network to gene expression data for cancer classification. In: Proceedings of IEEE International Joint Conference on Neural Networks, pp. 583–587 (2001)

    Google Scholar 

  8. Alshalalfa, M., Alhajj, R.: Application of double clustering to gene expression data for class prediction. In: Proceedings of AINA Wokshops, vol. 1, pp. 733–736 (2007)

    Google Scholar 

  9. Alshalalf, M., Alhajj, R.: Attractive feature reduction approach for colon data classification. In: Proceedings of AINA Workshops, vol. 1, pp. 678–683 (2007)

    Google Scholar 

  10. Khabbaz, M., Kianmher, K., Alshalalfa, M., Alhajj, R.: Fuzzy classifier based feature reduction for better gene selection. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 334–344. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kianmehr, K., Alshalalfa, M., Alhajj, R.: Effectiveness of fuzzy discretization for class association rule-based classification. In: Proceedings of the International Symposium on Methodologies for Intelligent Systems. LNCS. Springer, Heidelberg (2008)

    Google Scholar 

  12. Varshavsky, R., Gottlieb, A., Linial, L., Horn, D.: Novel unsupervised feature filtering of biological data. Bioinformatics 22, 507–513 (2006)

    Article  Google Scholar 

  13. Dudoit, S., Yang, Y.H., Callow, M., Speed, T.: Statistical methods for identifying differentiallyexpressed genes in replicated cdna microarray experiments. Technical Report #578, University of California, Berkeley (2000)

    Google Scholar 

  14. Alter, O., Brown, P., Botstein, D.: Singular value decomposition for genome-wide expression data processing and modeling. PNAS 97, 10101–10106 (2000)

    Article  Google Scholar 

  15. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906–914 (2000)

    Article  Google Scholar 

  16. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  17. Li, J., Wong, L.: Identifying good diagnosis gene group from gene expression profile using the concept of emerging patterns. Bioinformatics 18, 725–734 (2002)

    Article  Google Scholar 

  18. Zhang, X., Ke, H.: All/aml cancer classification by gene expression data using svm and csvm. Genomics informatics 11, 237–239 (2000)

    Google Scholar 

  19. Li, L., Pedersen, L.G., Darden, T.A., Weinberg, C.R.: Class prediction and discovery based on gene expression data. Iostatistics Branch and Lab of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (2000)

    Google Scholar 

  20. Bijlani, R., Cheng, Y., Pearce, D., Brooks, A., Ogihara, M.: Prediction of biologically significant components from microarray data: independently consisitent expression discriminator(iced). Bioinformatics 19, 62–70 (2003)

    Article  Google Scholar 

  21. Bicciato, S., Pandin, M., Didon, G., Bello, C.D.: Pattern identification and classification in gene expression data using an autoassociative neural network model. Biotechnology and Bioengineering 81, 594–606 (2002)

    Article  Google Scholar 

  22. Moler, E., Chow, M., Mian, I.: Analysis of molecular profile data using generative and disciminative methods. Physiol. genomics 4, 109–126 (2000)

    Google Scholar 

  23. Wang, J., Hellem, T., Jonassen, I., Myklebost, O., Hovig, E.: Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4, 60–70 (2003)

    Article  Google Scholar 

  24. Wang, L., Chu, F., Xie, W.: Accurate cancer calssification using expressions of very few genes. IEEE/ACM transactions on computational biology and bioinformatics 4, 40–53 (2007)

    Article  Google Scholar 

  25. Chu, F., Wang, L.: Cancer classification with microarray data using support vector machines. Bioinformatics using computational intelligence paradigms 176, 167–189 (2005)

    Article  Google Scholar 

  26. Chen, J., Tsai, C., Tzeng, S., Chen, C.: Gene selection with multiple ordering criteria. BMC Bioinformatics 8 (2007)

    Google Scholar 

  27. Jaeger, J., Sengupta, R., Ruzzo, W.L.: Improved gene selection for classification of microarrays. In: Proceedings of Pacific Symposium on Biocomputing, pp. 53–64 (2003)

    Google Scholar 

  28. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Leving, A.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide array. PNAS 96, 6745–6750 (1999)

    Article  Google Scholar 

  29. West, M., Dressman, H., Haung, E., Ishida, S., Spang, R., Zuzan, H., Olson, J., Marks, J., Nevins, J.R.: Predicting the clinical status of human breast cancer by using gene expression profiles. PNAS 98, 11562–11567 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alshalalfa, M., Qabaja, A., Alhajj, R., Rokne, J. (2009). Identifying Disease-Related Biomarkers by Studying Social Networks of Genes. In: Lim, C.P., Jain, L.C., Dehuri, S. (eds) Innovations in Swarm Intelligence. Studies in Computational Intelligence, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04225-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04225-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04224-9

  • Online ISBN: 978-3-642-04225-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics