Skip to main content

A New Method for Complexity Reduction of Neuro-fuzzy Systems with Application to Differential Stroke Diagnosis

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

  • 3699 Accesses

Abstract

In the paper we propose a new method for designing and reduction of neuro-fuzzy systems for stroke diagnosis. The concept of the weighted parameterized triangular norms is applied and neuro-fuzzy systems based on fuzzy S-implications are derived. In subsequent stages we reduce the linguistic model. The results are implemented to solve the problem of stroke diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliev, R.A., Aliev, R.R.: Soft Computing and its Applications. World Scientific Publishing, Singapore (2001)

    Book  MATH  Google Scholar 

  2. Alonso, J.M., Cordon, O., Guillaume, S., Magdalena, L.: Highly Interpretable Linguistic Knowledge Bases Optimization: Genetic Tuning versus Solis-Wetts. Looking for a good interpretability-accuracy trade-off. In: Proc. of the 2007 IEEE Int. Conf. on Fuzzy Systems, pp. 1–6 (2007)

    Google Scholar 

  3. Amaral, T.G., Crisostomo, M.M.: An Approach to Improve the Interpretability of Neuro-Fuzzy Systems. In: Proc. of the 2006 IEEE Int. Conf. on Fuzzy Systems, pp. 1843–1850 (2006)

    Google Scholar 

  4. Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.): Interpretability Issues in Fuzzy Modeling. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  5. Cpałka, K.: A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)

    Article  Google Scholar 

  6. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Analysis Series A: Theory, Methods & Applications, vol. 71. Elsevier, Amsterdam (2009)

    Google Scholar 

  7. Cpałka, K., Rebrova, O., Gałkowski, T., Rutkowski, L.: On differential stroke diagnosis by neuro-fuzzy structures. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 974–980. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Cpalka, K., Rutkowski, L.: An application of weighted triangular norms to complexity reduction of neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 207–216. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Czabanski, R.: Neuro-Fuzzy Modelling Based on a Deterministic Annealing Approach. Int. J. Appl. Math. Comput. Sci. 15(4), 561–576 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Czogała, E., Łȩski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Physica-Verlag, New York; A Springer Company, Heidelberg (2000)

    Book  MATH  Google Scholar 

  11. Fodor, C.: On fuzzy implication. Fuzzy Sets and Systems 42, 293–300 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gorzałczany, M.: Computational Intelligence Systems and Applications: Neuro-Fuzzy and Fuzzy Neural Synergisms. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  13. Guillaume, S.: Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Trans. Fuzzy Syst. 9(3), 426–443 (2001)

    Article  MathSciNet  Google Scholar 

  14. Kasabov, N.: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. The MIT Press, CA (1996)

    MATH  Google Scholar 

  15. Kecman, V.: Learning and Soft Computing. MIT, Cambridge (2001)

    MATH  Google Scholar 

  16. Kumar, M., Stoll, R., Stoll, N.: A robust design criterion for interpretable fuzzy models with uncertain data. IEEE Trans. Fuzzy Syst. 14(2), 314–328 (2006)

    Article  Google Scholar 

  17. Łȩski, J., Henzel, J.: A Neuro-Fuzzy System Based on Logical Interpretation of If-then Rules. Int. J. Appl. Math. Comput. Sci. 10(4), 703–722 (2000)

    MATH  Google Scholar 

  18. Łȩski, J.: A Fuzzy If-Then Rule-Based Nonlinear Classifier. Int. J. Appl. Math. Comput. Sci. 13(2), 215–223 (2003)

    MathSciNet  Google Scholar 

  19. Manley-Cooke, P., Razaz, M.: An efficient approach for reduction of membership functions and rules in fuzzy systems. In: Proc. of the 2007 IEEE Int. Conf. on Fuzzy Systems, pp. 1–6 (2007)

    Google Scholar 

  20. Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans. Neural Networks 11(3), 748–768 (2000)

    Article  Google Scholar 

  21. Rebrova, O., Kilikowski, V., Olimpieva, S., Ishanov, O.: Expert system and neural network for stroke diagnosis. International Journal of Information Technology and Intelligent Computing 1(2), 441–453 (2006)

    Google Scholar 

  22. Riid, A., Rustern, E.: Interpretability of Fuzzy Systems and Its Application to Process Control. In: Proc. of the 2007 IEEE Int. Conf. on Fuzzy Systems, pp. 1–6 (2007)

    Google Scholar 

  23. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2007)

    Google Scholar 

  24. Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  25. Rutkowski, L.: New Soft Computing Techniques for System Modeling. In: Pattern Classification and Image Processing. Springer, Heidelberg (2004)

    Google Scholar 

  26. Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Networks 14(3), 554–574 (2003)

    Article  Google Scholar 

  27. Yager, R.R., Filev, D.P.: Essentials of fuzzy modelling and control. John Wiley & Sons, Chichester (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cpałka, K., Rebrova, O., Rutkowski, L. (2009). A New Method for Complexity Reduction of Neuro-fuzzy Systems with Application to Differential Stroke Diagnosis. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics