Skip to main content

Using Parameterization and Springs to Determine Aneurysm Wall Thickness

  • Conference paper
Proceedings of the 18th International Meshing Roundtable

Abstract

Aneurysms are an enlargement of a blood vessel due to a weakened wall and can pose significant health risks. Abdominal aortic aneurysms alone are the 13th leading cause of death in the United States, with 15,000 deaths annually. While there are recommended guidelines for doctors to follow in the treatment of specific aneurysms, they cannot guarantee a satisfactory outcome. Computer simulations of an aneurysm may be able to help doctors in their treatment; however, the results are inaccurate if the vessel wall thickness is poorly measured. In order to provide more accurate, patient-specific simulations, not only does geometry for the fluid domain need to be created from medical images for analysis, but the creation of more accurate models for the wall needs to be accomplished as well. This paper proposes a solution to the latter by deforming the mesh from a healthy vessel into one with an aneurysm through parameterization and the use of a spring model. The thickness of the resulting wall model is empirically valid and fluid-structure interaction simulations show significant improvements when using a variable versus a uniform wall thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazilevs, Y., Hsu, M.C., Zhang, Y., Wang, W., Liang, X., Kvamsdal, T., Brekken, R., Isaksen, J.: Computational vascular fluid-structure interaction: Methodology and application to cerebral aneurysms. Submitted to Biomechanics and Modeling in Mechanobiology (2009)

    Google Scholar 

  2. Chen, P., Barner, K.E., Steiner, K.V.: A displacement driven real-time deformable model for haptic surgery simulation. In: HAPTICS 2006: Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Washington, DC, USA, pp. 499–505 (2006)

    Google Scholar 

  3. Cui, T., Song, A., Wu, J.: Simulation of a mass-spring model for global deformation. Frontiers of Electrical and Electronic Engineering in China 4(1), 78–82 (2009)

    Article  Google Scholar 

  4. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: SIGGRAPH 1995: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 173–182. ACM Press, New York (1995)

    Chapter  Google Scholar 

  5. Elliott, M.R., Thrush, A.J.: Measurement of resolution in intravascular ultrasound images. Physiological Measurement 17(4), 259–265 (1996)

    Article  Google Scholar 

  6. Figueroa, C.A., Vignon-Clementel, I.E., Jansen, K.E., Hughes, T.J.R., Taylor, C.A.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering 195(41–43), 5685–5706 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fleming, C., Whitlock, E.P., Beil, T.L., Lederle, F.A.: Screening for abdominal aortic aneurysm: A best-evidence systematic review for the u.s. preventive services task force. Annals of Internal Medicine 142(3), 203–211 (2005)

    Google Scholar 

  8. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14(3), 231–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freitag, L.A., Plassmann, P.: Local optimization-based simplicial mesh untangling and improvement. International Journal for Numerical Methods in Engineering 49, 109–125 (2000)

    Article  MATH  Google Scholar 

  10. Garimella, R.V., Shephard, M.S.: Boundary layer mesh generation for viscous flow simulations. International Journal for Numerical Methods in Engineering 49, 193–218 (2000)

    Article  MATH  Google Scholar 

  11. Güdükbay, U., Özgüç, B., Tokad, Y.: A spring force formulation for elastically deformable models. Computers & Graphics 21(3), 335–346 (1997)

    Article  Google Scholar 

  12. Hose, D.R., Lawford, P.V., Narracott, A.J., Penrose, J.M.T., Jones, I.P.: Fluid-solid interaction: Benchmarking of an external coupling of ANSYS with CFX for cardiovascular applications. Journal of Medical Engineering & Technology 27(1), 23–31 (2003)

    Article  Google Scholar 

  13. Isaksen, J., Bazilevs, Y., Kvamsdal, T., Zhang, Y., Kaspersen, J.H., Waterloo, K., Romner, B., Ingebrigsten, T.: Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39, 3172–3178 (2008)

    Article  Google Scholar 

  14. Johnson, E., Yamakawa, S., Shimada, K., Brewer, M.L., Owen, S.J.: Generating hexahedral boundary-layer meshes for CFD simulations (Manuscript in preparation) (2009)

    Google Scholar 

  15. Ketcham, R.A., Carlson, W.D.: Acquisition, optimization and interpretation of x-ray computed tomographic imagery: Applications to the geosciences. Computers and Geosciences 27(4), 381–400 (2001)

    Article  Google Scholar 

  16. Khawaja, A., Kallinderis, Y.: Hybrid grid generation for turbomachinery and aerospace applications. International Journal for Numerical Methods in Engineering 49, 145–166 (2000)

    Article  MATH  Google Scholar 

  17. Kim, J., Wang, S., Zeng, Y., Wang, Y., Gu, X., Qin, H., Samaras, D.: Ricci flow for 3D shape analysis. In: Proceedings of IEEE International Conference on Computer Vision 2007, Rio de Janeiro, Brazil (October 2007)

    Google Scholar 

  18. Kroon, M., Holzapfel, G.A.: Modeling of saccular aneurysm growth in a human middle cerebral artery. Journal of Biomechanical Engineering 130(5), 051012.1–051012.10 (2008)

    Article  Google Scholar 

  19. Mabotuwana, T.D.S., Cheng, L.K., Pullan, A.J.: A model of blood flow in the mesenteric arterial system. BioMedical Engineering OnLine 6, 17 (2007)

    Article  Google Scholar 

  20. Quadros, W.R., Owen, S.J., Brewer, M.L., Shimada, K.: Finite element mesh sizing for surfaces using skeleton. In: Proceedings, 13th International Meshing Roundtable, Williamsburg, VA, USA, pp. 389–400 (2004)

    Google Scholar 

  21. Raghavan, M.L., Kratzberg, J., de Tolosa, E.M.C., Hanaoka, M.M., Walker, P., da Silva, E.S.: Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. Journal of Biomechanics 39(12), 3010–3016 (2006)

    Article  Google Scholar 

  22. Sahni, O., Müller, J., Jansen, K.E., Shephard, M.S., Taylor, C.A.: Efficient anisotropic adaptive discretization of the cardiovascular system. Computer Methods in Applied Mechanics and Engineering 195(41–43), 5634–5655 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sander, P.V.: Sampling-efficient mesh parametrization. PhD thesis, Harvard University (2003)

    Google Scholar 

  24. Sandia National Laboratory. Cubit: Geometry and mesh generation toolkit

    Google Scholar 

  25. Scotti, C.M., Jimenez, J., Muluk, S.C., Finol, E.A.: Wall stress and flow dynamics in abdominal aortic aneurysms: Finite element analysis vs. fluid-structure interaction. Computer Methods in Biomechanics and Biomedical Engineering 11(3), 301–322 (2008)

    Article  Google Scholar 

  26. Scotti, C.M., Shkolnik, A.D., Muluk, S.C., Finol, E.A.: Fluid-structure interaction in abdominal aortic aneurysms: Effects of asymmetry and wall thickness. BioMedical Engineering OnLine 4, 64 (2005)

    Article  Google Scholar 

  27. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision 2(2), 105–171 (2006)

    Article  Google Scholar 

  28. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Computer Graphics 21(4), 205–214 (1987)

    Article  Google Scholar 

  29. Torii, R., Oshima, M., Kobayashi, T., Takagi, K., Tezduyar, T.E.: Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. Computer Methods in Applied Mechanics and Engineering (2008) doi:10.1016/j.cma.2008.08.020

    Google Scholar 

  30. Tutte, W.T.: How to draw a graph. London Mathematical Society 13, 743–768 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  31. Valencia, A.A., Guzmán, A.M., Finol, E.A., Amon, C.H.: Blood flow dynamics in saccular aneurysm models of the basilar artery. Journal of Biomechanical Engineering 128, 516–526 (2006)

    Article  Google Scholar 

  32. Yin, X., Dai, J., Yau, S.-T., Gu, X.: Slit map: Conformal parameterization for multiply connected surfaces. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 410–422. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C., Hughes, T.J.R.: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 196(29–30), 2943–2959 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, Y., Wang, W., Liang, X., Bazilevs, Y., Hsu, M.C., Kvamsdal, T., Brekken, R., Isaksen, J.: High fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms. Computer Modeling in Engineering & Science 42(2), 131–150 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnson, E., Zhang, Y., Shimada, K. (2009). Using Parameterization and Springs to Determine Aneurysm Wall Thickness. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics