Skip to main content

Enhanced Empirical Data for the Fundamental Diagram and the Flow Through Bottlenecks

  • Conference paper
  • First Online:
Pedestrian and Evacuation Dynamics 2008

Summary

In recent years, several approaches for modeling pedestrian dynamics have been proposed and applied e.g. for design of egress routes. However, so far not much attention has been paid to their quantitative validation. This unsatisfactory situation belongs amongst others on the uncertain and contradictory experimental data base. The fundamental diagram, i.e. the density-dependence of the flow or velocity, is probably the most important relation as it connects the basic parameter to describe the dynamic of crowds. But specifications in different handbooks as well as experimental measurements differ considerably. The same is true for the bottleneck flow. After a comprehensive review of the experimental data base we give an survey of a research project, including experiments with up to 250 persons performed under well controlled laboratory conditions. The trajectories of each person are measured in high precision to analyze the fundamental diagram and the flow through bottlenecks. The trajectories allow to study how the way of measurement influences the resulting relations. Surprisingly we found large deviation amongst the methods. These may be responsible for the deviation in the literature mentioned above. The results are of particular importance for the comparison of experimental data gained in different contexts and for the validation of models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Schadschneider, W. Klingsch, H. Kluepfel, T. Kretz, C. Rogsch, and A. Seyfried. Evacuation dynamics: Empirical results, modeling and applications. In Encyclopedia of Complexity and System Science. Springer, Berlin, 2009.

    Google Scholar 

  2. M. Boltes, A. Seyfried, B. Steffen, and A. Schadschneider. Automatic extraction of pedestrian trajectories from video recordings. In Pedestrian and Evacuation Dynamics 2008. Springer, Berlin, 2010.

    Google Scholar 

  3. V. M. Predtechenskii and A. I. Milinskii. Planning for Foot Traffic Flow in Buildings. Amerind, New Delhi, 1978.

    Google Scholar 

  4. J. J. Fruin. Pedestrian Planning and Design. Elevator World, New York, 1971.

    Google Scholar 

  5. U. Weidmann. Transporttechnik der Fussgänger. Schriftenreihe des IVT 90, ETH Zürich, 1993.

    Google Scholar 

  6. H. E. Nelson and F. W. Mowrer. Emergency movement. In P. J. DiNenno, editor, SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, 2002.

    Google Scholar 

  7. S. J. Older. Movement of pedestrians on footways in shopping streets. Traffic Engineering and Control, 10:160–163, 1968.

    Google Scholar 

  8. D. Helbing, A. Johansson, and H. Z. Al-Abideen. Dynamics of crowd disasters: An empirical study. Physical Review E, 75:046109, 2007.

    Article  Google Scholar 

  9. F. D. Navin and R. J. Wheeler. Pedestrian flow characteristics. Traffic Engineering, 39:31–36, 1969.

    Google Scholar 

  10. B. Pushkarev and J. M. Zupan. Capacity of walkways. Transportation Research Record, 538:1–15, 1975.

    Google Scholar 

  11. D. Oeding. Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs. Forschungsbericht 22, Technische Hochschule Braunschweig, 1963.

    Google Scholar 

  12. B. D. Hankin and R. A. Wright. Passenger flow in subways. Operational Research Quarterly, 9:81–88, 1958.

    Article  Google Scholar 

  13. M. Mori and H. Tsukaguchi. A new method for evaluation of level of service in pedestrian facilities. Transportation Research Part A, 21(3):223–234, 1987.

    Article  Google Scholar 

  14. A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes. The fundamental diagram of pedestrian movement revisited. J. Stat. Mech., page P10002, 2005.

    Google Scholar 

  15. D. Dieckmann. Die Feuersicherheit in Theatern. Jung München, 1911.

    Google Scholar 

  16. H. Fischer. Über die Leistungsfähigkeit von Türen, Gängen und Treppen bei ruhigem, dichtem Verkehr. Dissertation, Technische Hochschule Dresden, 1933.

    Google Scholar 

  17. A. Seyfried, T. Rupprecht, O. Passon, B. Steffen, W. Klingsch, and M. Boltes. New insights into pedestrian flow through bottlenecks. Transportation Science (accepted for publication), 2008. arXiv:physics/0702004v2.

  18. K. Müller. Zur Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Bauwerken auf der Grundlage von Modellversuchen. Dissertation, Technische Hochschule Magdeburg, 1981.

    Google Scholar 

  19. H. C. Muir, D. M. Bottomley, and C. Marrison. Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress. The International Journal of Aviation Psychology, 6:57–77, 1996.

    Article  Google Scholar 

  20. R. Nagai, M. Fukamachi, and T. Nagatani. Evacuation of crawlers and walkers from corridor through an exit. Physica A, 367:449–460, 2006.

    Article  Google Scholar 

  21. T. Kretz, A. Grünebohm, and M. Schreckenberg. Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech., page P10014, 2006.

    Google Scholar 

  22. A. Seyfried, B. Steffen, A. Winkens, T. Rupprecht, M. Boltes, and W. Klingsch. Empirical data for pedestrian flow through bottlenecks. In Traffic and Granular Flow 2007. Springer, Berlin, 2007.

    Google Scholar 

  23. V. Popkov and G.M. Schütz. Steady-state selection in driven diffusive systems with open boundaries. Europhys. Lett., 48(3):257–263, 1999.

    Article  Google Scholar 

  24. W. Leutzbach. Introduction to the Theory of Traffic Flow. Springer, Berlin, 1988.

    Google Scholar 

  25. B. S. Kerner. The Physics of Traffic. Springer, Berlin, 2004.

    Google Scholar 

  26. K. Togawa. Study on fire escapes basing on the observation of multitude currents. Report of the Building Research Institute 14, Ministry of Construction, Japan, 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Seyfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seyfried, A. et al. (2010). Enhanced Empirical Data for the Fundamental Diagram and the Flow Through Bottlenecks. In: Klingsch, W., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds) Pedestrian and Evacuation Dynamics 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04504-2_11

Download citation

Publish with us

Policies and ethics