Skip to main content

Bayesian Dimension Reduction Models for Microarray Data

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5495))

Included in the following conference series:

  • 2097 Accesses

Abstract

High dimensionality, missing values, noise, and outliers are standard problems in gene expression data and are usually dealt with separately. In this paper, we propose an ideal point model that performs feature extraction, imputes missing values, and is robust to noise and outliers in a unified and unsupervised framework. We use the simplifying assumption that genes are either expressed or not expressed in order to obtain a parsimonious model. We present a fast Bayesian method for estimating the large number of parameters in the ideal point model. We apply the ideal point model to a leukemia data set, where it outperforms independent component analysis (ICA), a state of the art unsupervised feature extraction method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, J.H.: Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics 17, 251–269 (1992)

    Article  Google Scholar 

  2. Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 88, 669–679 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906–914 (2000)

    Article  Google Scholar 

  5. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Statistical Science 7, 457–511 (1992)

    Article  Google Scholar 

  6. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  7. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, New York (2001)

    Book  MATH  Google Scholar 

  8. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  9. Jackman, S.: Multidimensional analysis of roll call data via Bayesian simulation: identification, estimation, inference and model checking. Political Analysis 9, 227–241 (2001)

    Article  Google Scholar 

  10. Johnson, V.E., Albert, J.H.: Ordinal data modeling. Springer, New York (1999)

    MATH  Google Scholar 

  11. Lee, S., Batzoglou, S.: Application of independent component analysis to microarrays. Genome Biology 4, 11 (2003)

    Article  Google Scholar 

  12. Li, H., Hong, F.: Cluster-Rasch models for microarray gene expression data. Genome Biology 2, 8 (2001)

    Google Scholar 

  13. MAQC Consortium: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology 24, 1151–1161 (2006)

    Google Scholar 

  14. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)

    Article  Google Scholar 

  15. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shieh, A.D. (2009). Bayesian Dimension Reduction Models for Microarray Data. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2009. Lecture Notes in Computer Science, vol 5495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04921-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04921-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04920-0

  • Online ISBN: 978-3-642-04921-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics