Skip to main content

Multi-primitive Analysis of Digital Curves

  • Conference paper
Combinatorial Image Analysis (IWCIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5852))

Included in the following conference series:

Abstract

In this paper, we propose a new approach for the analysis and the decomposition of digital curves simultaneously into straight and circular parts. Both digital primitives are defined using a thickness parameter. Our method relies on the notion of Tangential Cover [8] which represents digital curves by the set of maximal primitives. The nature of the Tangential Cover allows for fast computation and makes our approach easily extendable, not only to other types of digital primitives, but also to thick digital curves [7]. The results are promising.

This work was supported by the French National Agency of Research under contract GEODIB ANR-06-BLAN-0225.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi, S., Mokhtarian, F., Kittler, J.: The SQUID database, located at write time at (2002), http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html

  2. Andres, E.: Discrete Circles, Rings and Spheres. Computers and Graphics 18(5), 695–706 (1994)

    Article  Google Scholar 

  3. Buzer, L.: Digital line recognition, convex hull, thickness, a unified and logarithmic technique. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 189–198. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. de Berg, M., Bose, P., Bremner, D., Ramaswami, S., Wilfong, G.T.: Computing Constrained Minimum-Width Annuli of Point Sets. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 392–401. Springer, Heidelberg (1997)

    Google Scholar 

  5. Debled-Rennesson, I., Reveillès, J.-P.: A Linear Algorithm for Segmentation of Digital Curves. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) 9(4), 635–662 (1995)

    Article  Google Scholar 

  6. Faure, A., Buzer, L., Feschet, F.: Tangential Cover for Thick Digital Curves. Pattern Recognition, doi:10.1016/j.patcog.2008.11.009

    Google Scholar 

  7. Faure, A., Feschet, F.: Robust Decomposition of Thick Digital Shapes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 148–159. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Feschet, F.: Canonical representations of discrete curves. Pattern Anal. Appl. 8(1-2), 84–94 (2005)

    Article  MathSciNet  Google Scholar 

  9. Feschet, F., Tougne, L.: On the min DSS problem of closed discrete curves. Discrete Applied Mathematics 151(1-3), 138–153 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hilaire, X., Tombre, K.: Robust and Accurate Vectorization of Line Drawings. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(6), 890–904 (2006)

    Article  Google Scholar 

  11. Kerautret, B., Lachaud, J.-O.: Robust Estimation of Curvature along Digital Contours with Global Optimization. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 334–345. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Computer Graphics and Geometric Modeling. Morgan Kaufman, San Francisco (2004)

    MATH  Google Scholar 

  13. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10) (2006)

    Google Scholar 

  14. Lindenbaum, M., Bruckstein, A.M.: On Recursive, O(N) Partitioning of a Digitized Curve into Digital Straight Segments. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(9), 949–953 (1993)

    Article  Google Scholar 

  15. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique, Thèse d’Etat (1991)

    Google Scholar 

  16. Rosin, P., West, G.: Nonparametric Segmentation of Curves into Various Representations. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1140–1153 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faure, A., Feschet, F. (2009). Multi-primitive Analysis of Digital Curves. In: Wiederhold, P., Barneva, R.P. (eds) Combinatorial Image Analysis. IWCIA 2009. Lecture Notes in Computer Science, vol 5852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10210-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10210-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10208-0

  • Online ISBN: 978-3-642-10210-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics