Skip to main content

Precipitation of CaCO3 Under Sulphate-Reduction Conditions

  • Chapter
  • First Online:
Advances in Stromatolite Geobiology

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 131))

Abstract

The major part of geochemical processes in the lithosphere, including the formation of carbonate minerals, may be linked with the activity of living organisms. These processes are influenced by physical and chemical factors in the environment that significantly control the occurrence of particular mineral phases. Because the reactions of carbonate precipitation are controlled by, e.g., carbon dioxide content, biotic factors seem to play a significant role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL, Patel BKC 1998 Desulfovibrio aminophilus sp.nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Systematic and applied microbiology 21:498–504

    Article  Google Scholar 

  • Borowitzka MA 1989 Carbonate calcification in algae – initiation and control. In: Mann S, Webb J, Wiliams RJP (eds) Biomineralization, Weinheim, Germany: VCH Verlagsgesellschaft pp 116–135.

    Google Scholar 

  • Castanier S, Metayer-Levrel GL, Perthuisot J-P 1999 Ca-carbonates precipitation and limestone genesis – the microbiogeologist point of view. Sedimentary Geology 126:9–23

    Article  Google Scholar 

  • De Wit R 1992 Sulphide-containing environments. In: Lederberg J (ed) Encyclopedia of Microbiology, San Diego, CA: Academic 4:105–121

    Google Scholar 

  • Dittrich M, Kurz P, Wehrli B 2004 The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiology Journal 21:45–53

    Article  Google Scholar 

  • Dupraz C, Visscher P 2005 Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology 13(9):429–438

    Article  Google Scholar 

  • Ehrlich H 2001 Microbial formation and degradation of carbonates. In: Geomicrobiology, New York: Mercel Dekker, Inc. pp 183–227

    Google Scholar 

  • Fauque G, Legall J, Barton LL 1991 Sulfate-reducing and sulfur reducing bacteria. In: Shively JMI, Barton LL (eds) Variations in autotrophic life. New York: Academic

    Google Scholar 

  • Gibson G 1990 Physiology and ecology of the sulphate-reducing bacteria. Journal of Applied Bacteriology 69:769–797

    Article  Google Scholar 

  • Hammes F, Verstraete W 2002 Key roles of pH and calcium metabolism in microbial carbonate precipitation. Re/Views in Environmental Science & Bio/Technology 1:3–7

    Google Scholar 

  • Hao OJ, Chen JM, Huang L, Buglass RL 1996 Sulfate-reducing bacteria. Critical reviews in environmental science and technology 26:155–187

    Article  Google Scholar 

  • Hernandez-Eugenio G, Fardeau ML, Patel BKC, Garcia JL, Ollivier B 2000 Desulfovibrio mexicanus sp.nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blancet (UASB) reactor treating cheese wastewaters. Anaerobe 6:305–312

    Article  Google Scholar 

  • Hilton BL, Oleskiewicz JA 1989 Sulfide-induced inhibition of anaerobic digestion. Journal of Environmental Engineering 144:1377–1391

    Google Scholar 

  • Karnachuk OV, Kurochkina SY, Tuovinen OH 2002 Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Applied Microbiology Biotechnology 58:482–486

    Article  Google Scholar 

  • Lysnes K, Thorseth IH, Steinsbu BO, Øvreas L, Torsvik T, Pedersen K 2004 Microbial community diversity in seafloor basalt from the Artic spreading riges. FEMS Microbiological Ecology 50:213–230

    Article  Google Scholar 

  • Magot M, Ollivier B, Patel BKC 2000 Microbiology of petroleum reservoirs. Antonie van Leeuwenhoeck 77:103–116

    Article  Google Scholar 

  • McCartney DM, Oleszkiewicz JA 1991 Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Research 25:203–209

    Article  Google Scholar 

  • Miyajima T, Wada E 1999 Sulfate-induced isotopic variation in biogenic methane from a tropical swamp without anaerobic methane oxidation. Hydrobiologia 382:113–118

    Article  Google Scholar 

  • Moore TS, Murray RW, Kurtz AC, Schrag DP 2004 Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters 229:141–154

    Article  Google Scholar 

  • Ogrinc N, Hintelmann H, Eckley C, Lojen S 2003 Biogeochemical influence on carbon isotope signature in boreal lake sediments. Hydrobiologia 494:207–213

    Article  Google Scholar 

  • Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J 1999 Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced, authigenic carbonates. International Journal of Earth Sciences 88:60–75

    Article  Google Scholar 

  • Perry CT, Taylor KG 2006 Inhibition of dissolution within shallow water carbonate sediments: impacts of terrigenous sediment input on syn-depositional carbonate diagenesis. Sedimentology 53:495–513

    Article  Google Scholar 

  • Postgate JR 1984 The sulfate-reducing bacteria. 2nd edition. Cambridge University Press, Cambridge

    Google Scholar 

  • Rees GN, CG Harfoot, AJ Sheehy 1997 Amino acid degradation by the mesophilic sulfate-reducing bacterium Desulfobacterium vacuolatum. Archives of Microbiology 169:76–80

    Article  Google Scholar 

  • Reis MAM, Almeida JS, Lemos PC, Carrondo MJT 1992 Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnology and Bioengineering 40:593–600

    Article  Google Scholar 

  • Valentine DL 2002 Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie van Leeuwenhoek 81:271–282

    Article  Google Scholar 

  • Warthman R, Van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff AM 2000 Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094

    Article  Google Scholar 

  • Wolicka D 2006 Biotransformation of phosphogypsum in cultures of bacteria selected from petroleum W: Proceedings of the International Conference Protection and Restoration of the Environmental VIII Chania, Greece, 3–7 July, pp 217–218

    Google Scholar 

  • Wright DT 2000 Benthic microbial communities and dolomite formation in marine and lacustrine environments – a new dolomite model. In: Glenn CR, Lucas J, Prevot L (red). Marine Authigenesis from Global to microbial. SEPM Spec Publ 66:7–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Wolicka .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Wolicka, D., Borkowski, A. (2011). Precipitation of CaCO3 Under Sulphate-Reduction Conditions. In: Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10415-2_10

Download citation

Publish with us

Policies and ethics