Skip to main content

Algorithms for the Computation of Reduced Convex Hulls

  • Conference paper
AI 2009: Advances in Artificial Intelligence (AI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5866))

Included in the following conference series:

Abstract

Geometric interpretations of Support Vector Machines (SVMs) have introduced the concept of a reduced convex hull. A reduced convex hull is the set of all convex combinations of a set of points where the weight any single point can be assigned is bounded from above by a constant. This paper decouples reduced convex hulls from their origins in SVMs and allows them to be constructed independently. Two algorithms for the computation of reduced convex hulls are presented – a simple recursive algorithm for points in the plane and an algorithm for points in an arbitrary dimensional space. Upper bounds on the number of vertices and facets in a reduced convex hull are used to analyze the worst-case complexity of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in SVM classifiers. In: ICML 2000: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 57–64. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  2. Crisp, D.J., Burges, C.J.C.: A geometric interpretation of ν-SVM classifiers. In: Solla, S.A., Leen, T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Systems 12, Papers from Neural Information Processing Systems (NIPS), Denver, CO, USA, pp. 244–251. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Bern, M., Eppstein, D.: Optimization over zonotopes and training Support Vector Machines. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 111–121. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Mavroforakis, M.E., Sdralis, M., Theodoridis, S.: A novel SVM geometric algorithm based on reduced convex hulls. In: 18th International Conference on Pattern Recognition, vol. 2, pp. 564–568 (2006)

    Google Scholar 

  5. Mavroforakis, M.E., Theodoridis, S.: A geometric approach to Support Vector Machine (SVM) classification. IEEE Transactions on Neural Networks 17(3), 671–682 (2006)

    Article  Google Scholar 

  6. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 22(4), 469–483 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aurenhammer, F.: Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Computing Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  8. Preparata, F.P., Shamos, M.I.: Computational Geometry, 2nd edn. Springer, New York (1988)

    Google Scholar 

  9. Eddy, W.F.: A new convex hull algorithm for planar sets. ACM Transactions on Mathematical Software 3(4), 398–403 (1977)

    Article  MATH  Google Scholar 

  10. Bykat, A.: Convex hull of a finite set of points in two dimensions. Information Processing Letters 7, 296–298 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Green, P.J., Silverman, B.W.: Constructing the convex hull of a set of points in the plane. The Computer Journal 22(3), 262–266 (1978)

    Article  Google Scholar 

  12. Kallay, M.: Convex hull algorithms in higher dimensions. Department of Mathematics, University of Oklahoma (1981) (unpublished manuscript)

    Google Scholar 

  13. Klee, V.: Convex polytopes and linear programming. In: IBM Scientific Computing Symposium: Combinatorial Problems, pp. 123–158. IBM, Armonk (1966)

    Google Scholar 

  14. O’Rourke, J.: Computation Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  15. Clarkson, K.L., Mehlhorn, K., Seidel, R.: Four results on randomized incremental constructions. Computational Geometry: Theory and Applications 3(4), 185–212 (1993)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goodrich, B., Albrecht, D., Tischer, P. (2009). Algorithms for the Computation of Reduced Convex Hulls. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10439-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10438-1

  • Online ISBN: 978-3-642-10439-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics