Skip to main content

Constructing Stochastic Mixture Policies for Episodic Multiobjective Reinforcement Learning Tasks

  • Conference paper
AI 2009: Advances in Artificial Intelligence (AI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5866))

Included in the following conference series:

Abstract

Multiobjective reinforcement learning algorithms extend reinforcement learning techniques to problems with multiple conflicting objectives. This paper discusses the advantages gained from applying stochastic policies to multiobjective tasks and examines a particular form of stochastic policy known as a mixture policy. Two methods are proposed for deriving mixture policies for episodic multiobjective tasks from deterministic base policies found via scalarised reinforcement learning. It is shown that these approaches are an efficient means of identifying solutions which offer a superior match to the user’s preferences than can be achieved by methods based strictly on deterministic policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello Coello, C.A.: Handling Preferences in Evolutionary Multiobjective Optimization: A Survey. In: 2000 Congress on Evolutionary Computation, vol. 1, pp. 30–37 (2000)

    Google Scholar 

  2. Tesauro, G., Das, R., Chan, H., Kephart, J.O., Lefurgy, C., Levine, D.W., Rawson, F.: Managing power consumption and performance of computing systems using reinforcement learning. In: Neural Information Processing Systems (2007)

    Google Scholar 

  3. Natarajan, S., Tadepalli, P.: Dynamic preferences in multi-criteria reinforcement learning. In: International Conference on Machine Learning, Bonn, Germany, pp. 601–608 (2005)

    Google Scholar 

  4. Castelletti, A., Corani, G., Rizzolli, A., Soncinie-Sessa, R., Weber, E.: Reinforcement learning in the operational management of a water system. In: IFAC Workshop on Modeling and Control in Environmental Issues, Keio University, Yokohama, Japan, pp. 325–330 (2002)

    Google Scholar 

  5. Vamplew, P., Yearwood, J., Dazeley, R., Berry, A.: On the Limitations of Scalarisation for Multiobjective Learning of Pareto Fronts. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 372–378. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Gabor, Z., Kalmar, Z., Szepesvari, C.: Multi-criteria reinforcement learning. In: The Fifteenth International Conference on Machine Learning, pp. 197–205 (1998)

    Google Scholar 

  7. Mannor, S., Shimkin, N.: The steering approach for multi-criteria reinforcement learning. In: Neural Information Processing Systems, Vancouver, Canada, pp. 1563–1570 (2001)

    Google Scholar 

  8. Mannor, S., Shimkin, N.: A geometric approach to multi-criterion reinforcement learning. Journal of Machine Learning Research 5, 325–360 (2004)

    MathSciNet  Google Scholar 

  9. Shelton, C.R.: Importance sampling for reinforcement learning with multiple objectives, Massachusetts Institute of Technology AI Laboratory Tech Report No. 2001-003 (2001)

    Google Scholar 

  10. Mahadevan, S., Ghavamzadeh, M., Theocharous, G., Rohanimanesh, K.: Hierarchical Approaches to Concurrency, Multiagency, and Partial Observability. In: Si, J., Barto, A., Powell, W., Wunsch, D. (eds.) Handbook of Learning and Adaptive Dynamic Programming, pp. 285–310. Wiley-IEEE (2004)

    Google Scholar 

  11. Kelley, J.L., Namioka, I.: Linear topological spaces. Graduate Texts in Mathematics, vol. 36. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  12. Barrett, L., Narayanan, S.: Learning All Optimal Policies with Multiple Criteria. In: Proceedings of the International Conference on Machine Learning (2008)

    Google Scholar 

  13. Seidel, R.: Convex Hull Computations. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 361–376. CRC Press, Boca Raton (1997)

    Google Scholar 

  14. Agrawal, G., Lewis, K., Chugh, K., Huang, C.-H., Parashar, S., Bloebaum, C.L.: Intuitive Visualization of Pareto Frontier for Multi-Objective Optimization in n-Dimensional Performance Space. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vamplew, P., Dazeley, R., Barker, E., Kelarev, A. (2009). Constructing Stochastic Mixture Policies for Episodic Multiobjective Reinforcement Learning Tasks. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10439-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10438-1

  • Online ISBN: 978-3-642-10439-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics