Skip to main content

Kinetic Description of Plasmas

  • Chapter
  • First Online:
Plasma Physics
  • 4673 Accesses

Abstract

In the previous chapters, the description of the plasma state was refined step by step. In the single-particle model, we were interested in the motion of individual particles in typical magnetic field configurations, but the interaction between the particles and the modification of the fields by the presence and motion of charged particles was neglected. In the fluid model, we had considered the average behavior of particles filling a small volume of space. In this approximation, only moments of a shifted Maxwell distribution, like mean flow velocity or gas temperature, were retained, but, by combining with Maxwell’s equations, the model became self-consistent. The fluid model goes beyond the single-particle model in that pressure effects are now included. This fluid model, and its formulation in terms of MHD-equations, became capable to describe the combined macroscopic motion of plasma and magnetic field lines. A first attempt to deal with non-Maxwellian velocity distributions was the introduction of a beam-plasma system, which generates self-excited electrostatic waves near the electron plasma frequency.

“All right”, said the Cat; and this time it vanished quite slowly, beginning with the end of the tail, and ending with the grin, which remained some time after the rest of it had gone.

Lewis Carroll, Alice in Wonderland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Dawson, Phys. Fluid. 4, 869 (1961)

    Article  ADS  Google Scholar 

  2. L.D. Landau, J. Phys. USS. 10, 25 (1946)

    Google Scholar 

  3. J.H. Malmberg, C.B. Wharton, Phys. Rev. Lett. 17, 175 (1966)

    Article  ADS  Google Scholar 

  4. H. Weitzner, Phys. Fluid. 6, 1123 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Lacina, Plasma Phys. 14, 605 (1972)

    Article  ADS  Google Scholar 

  6. J. Weiland, Eur. J. Phys. 2, 171 (1981)

    Article  Google Scholar 

  7. J. Lacina, Plasma Phys. Control. Fusio. 36, 601 (1884)

    Article  ADS  Google Scholar 

  8. R.W.B. Best, Physica Scr. 59, 55 (1999)

    Article  ADS  Google Scholar 

  9. D.D. Ryutov, Plasma Phys. Control. Fusion 41, A1 (1999)

    Article  ADS  Google Scholar 

  10. W.E. Drummond, Phys. Plasma. 11, 552 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Bilato, M. Brambilla, Comm. Nonlin. Sci. Num. Sim. 13, 18 (2008)

    Article  MATH  ADS  Google Scholar 

  12. I. Alexeff, O. Ishihara, IEEE Trans. Plasma Sci. 6, 212 (1978)

    Article  ADS  Google Scholar 

  13. D. Sagan, Am. J. Phys. 62, 450 (1994)

    Article  ADS  Google Scholar 

  14. G. Brodin, Am. J. Phys. 65, 66 (1997)

    Article  ADS  Google Scholar 

  15. D. Anderson, R. Fedele, M. Lisak, Am. J. Phys. 69, 1262 (2001)

    Article  ADS  Google Scholar 

  16. R.W. Gould, T.M. O’Neill, J.H. Malmberg, Phys. Rev. Lett. 19, 219 (1967)

    Article  ADS  Google Scholar 

  17. J.H. Malmberg, C.B. Wharton, R.W. Gould, T.M. O’Neill, Phys. Fluid. 11, 1147 (1968)

    Article  ADS  Google Scholar 

  18. A.Y. Wong, D.R. Baker, Phys. Rev. 188, 326 (1969)

    Article  ADS  Google Scholar 

  19. D.R. Nicholson, Introduction to Plasma Theory (Wiley, New York, 1983)

    Google Scholar 

  20. B.R. Ripin, R.E. Pechacek, Phys. Rev. Lett. 24, 1330 (1970)

    Article  ADS  Google Scholar 

  21. D.R. Baker, N.R. Ahern, A.Y. Wong, Phys. Rev. Lett. 20, 318 (1968)

    Article  ADS  Google Scholar 

  22. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Adam Hilger, Bristol, 1991)

    Google Scholar 

  23. C.K. Birdsall, B. Langdon, Plasma Physics via Computer Simulation (Adam Hilger, Bristol, 1991)

    Book  Google Scholar 

  24. J.P. Verboncoeur, M.V. Alves, V. Vahedi, C.K. Birdsall, J. Comp. Phys. 104, 321 (1992)

    Article  ADS  Google Scholar 

  25. D.J. Sullivan, IEEE Trans. Nucl. Sci. 26, 4274 (1979)

    Article  ADS  Google Scholar 

  26. D.J. Sullivan, IEEE Trans. Nucl. Sci. 30, 3426 (1983)

    Article  ADS  Google Scholar 

  27. H.A. Davis, R.R. Bartsch, T.J.T. Kwan, E.G. Sherwood, R.M. Stringfield, Phys. Rev. Lett. 59, 288 (1987)

    Article  ADS  Google Scholar 

  28. S. Burkhart, J. Appl. Phys. 62, 75 (1987)

    Article  ADS  Google Scholar 

  29. W. Jiang, M. Kristiansen, Phys. Plasma. 8, 3781 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Piel .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piel, A. (2010). Kinetic Description of Plasmas. In: Plasma Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10491-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10491-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10490-9

  • Online ISBN: 978-3-642-10491-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics