Skip to main content

Carbon Nanostructures – Tubes, Graphene , Fullerenes , Wave-Particle Duality

  • Chapter
  • First Online:
Nanoscience

Abstract

The discoveries of the carbon nanostructures, such as the 0D fullerenes [5.1] and their mass production [5.2], the 1D carbon nanotubes [5.3], and 2D graphene [5.4] substantially contributed to the fast development of nanoscience. More than 1,000 PhDs have been awarded for research on carbon nanotubes alone [5.5]. However, the carbon nanostructures have emerged as likely candidates for a wide range of applications, driving research into novel techniques for synthesizing these nanostructures. In this chapter we will first discuss carbon nanotubes, then graphene layers which have been studied only recently, and finally fullerenes such as C60 and similar molecular structures with a brief summary of the limits of wave-particle duality studied with fullerene nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.W. Kroto et al., Nature 318, 162 (1985)

    ADS  Google Scholar 

  2. W. Krätschmer et al., Nature 347, 354 (1990)

    ADS  Google Scholar 

  3. S. Iijima, Nature 354, 56 (1991)

    ADS  Google Scholar 

  4. K.S. Novoselov et al., Science 306, 666 (2004); Proc. Natl. Acad. Sci. USA 102, 10451 (2005)

    ADS  Google Scholar 

  5. S. Iijima, Nat. Nanotechnol. 2, 590 (2007)

    Google Scholar 

  6. Ando et al., Materials today, October 2004, p. 22

    Google Scholar 

  7. S.M. Huang, et al., J. Am. Chem. Soc. 125, 5636 (2003)

    Google Scholar 

  8. X. Zhao et al., Phys. Rev. Lett. 92, 125502 (2004)

    ADS  Google Scholar 

  9. C. Journet et al., Nature 388, 756 (1997)

    ADS  Google Scholar 

  10. J. Robertson, Materials today 10, Jan – Feb 2007, p. 36

    Google Scholar 

  11. T. Nozaki, K. Okazaki, Plasma Process. Polym. 5, 300 (2008)

    Google Scholar 

  12. S. Helveg et al., Nature 427, 426 (2004)

    ADS  Google Scholar 

  13. S. Hofmann et al., Appl. Phys. Lett. 83, 135 (2003)

    ADS  Google Scholar 

  14. M. Cantoro et al., Nano Lett. 6, 1107 (2006)

    ADS  Google Scholar 

  15. Y. Wang et al., Chem. Phys. Lett. 364, 568 (2002)

    ADS  Google Scholar 

  16. M.J. Bronikowski et al., J. Vac. Sci. Technol. A 19, 1800 (2001)

    ADS  Google Scholar 

  17. M. Terrones et al., Materials today, October 2004, p. 30

    Google Scholar 

  18. M.C. Hersam, Nat. Nanotechnol. 3, 387 (2008)

    ADS  Google Scholar 

  19. M. Zheng, E.D. Semke, J. Am. Chem. Soc. 129, 6084 (2007)

    Google Scholar 

  20. L. Ding et al., Nano Lett. 9, 800 (2009)

    ADS  Google Scholar 

  21. C. Sealy, Nanotoday, April 2009, p. 109

    Google Scholar 

  22. W. Hönlein, F. Kreupl, Physik Journal 3, Nr. 10, 39 (2004)

    Google Scholar 

  23. A. Jorio et al., MRS Bull. April 2004, p. 276

    Google Scholar 

  24. Ch. Schönenberger, Nat. Nanotechnol. 4, 147 (2009)

    ADS  Google Scholar 

  25. V.V. Deshpande et al., Science 323, 106 (2009)

    ADS  Google Scholar 

  26. N.F. Mott, Proc. Phys. Soc. A62, 416 (1949)

    ADS  Google Scholar 

  27. L. Balents, M.P.A. Fisher, Phys. Rev. B 55, 11973 (1997)

    ADS  Google Scholar 

  28. P. Avouris, MRS Bull. 29, June 2004, p. 403

    Google Scholar 

  29. P.L. McEuen, J.-Y. Park, MRS Bull. April 2004, p. 272

    Google Scholar 

  30. T. Dürkop et al., in Structural and Electronic Properties of Molecular Nanostructures, eds. by H. Kuzmany et al. AiP Conference Proceedings, vol. 633 (American Institute of Physics, New York, 2002), p. 242

    Google Scholar 

  31. A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974)

    ADS  Google Scholar 

  32. L. Lüer et al., Nat. Phys. 5, 54 (2009)

    Google Scholar 

  33. S.J. Tans et al., Nature 386, 474 (1997)

    ADS  Google Scholar 

  34. R. Martel et al., Appl. Phys. Lett. 73, 2447 (1998)

    ADS  Google Scholar 

  35. A. Javey et al., Nat. Mater. 1, 241 (2002)

    ADS  Google Scholar 

  36. L.C. Venema et al, Science 283, 52 (1999)

    ADS  Google Scholar 

  37. J.P. Lu, Phys. Rev. Lett. 74, 1123 (1995)

    ADS  Google Scholar 

  38. E.D. Minot et al., Nature 428, 536 (2004)

    ADS  Google Scholar 

  39. K. Tsukagoshi et al., Nature 401, 572 (1999)

    ADS  Google Scholar 

  40. B.W. Alphenaar et al., J. Appl. Phys. 89, 6863 (2001)

    ADS  Google Scholar 

  41. A. Bachtold et al., Nature 397, 673 (1999)

    ADS  Google Scholar 

  42. S. Zaric et al., Science 304, 1129 (2004)

    ADS  Google Scholar 

  43. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    MathSciNet  ADS  MATH  Google Scholar 

  44. I. Takesue et al., Phys. Rev. Lett. 96, 057001 (2006)

    ADS  Google Scholar 

  45. J. Haruyama et al., Appl. Phys. Lett. 84, 4714 (2004)

    ADS  Google Scholar 

  46. B. Braunecker et al., Phys. Rev. Lett. 102, 116403 (2009)

    ADS  Google Scholar 

  47. J.A. Rodríguez-Manzo et al., Proc. Natl. Acad. Sci. USA 106, 4591 (2009)

    ADS  Google Scholar 

  48. J. Lefebre et al., Phys. Rev. Lett. 90, 217401 (2003)

    ADS  Google Scholar 

  49. C.D. Spataru et al., Phys. Rev. Lett. 92, 077402 (2004)

    ADS  Google Scholar 

  50. M. Freitag et al., Nano Lett. 3, 1067 (2003)

    ADS  Google Scholar 

  51. A. Misewich et al., Science 300, 783 (2003)

    ADS  Google Scholar 

  52. S.-Y. Ju et al., Science 323, 1319 (2009)

    ADS  Google Scholar 

  53. G.E. Begstrup et al., Phys. Rev. Lett. 99, 155901 (2007)

    ADS  Google Scholar 

  54. G. Overney et al., Z. Phys. D27, 93 (1993)

    ADS  Google Scholar 

  55. M.M. J. Treacy et al., Nature 381, 678 (1996)

    ADS  Google Scholar 

  56. A.B. Dalton et al., Nature 423, 703 (2003)

    ADS  Google Scholar 

  57. T. Hertel et al., J. Phys. Chem. B102, 910 (1998)

    Google Scholar 

  58. A. Rochefort et al., Phys. Rev. B 60, 13824 (1999)

    ADS  Google Scholar 

  59. M. Zhang et al., Science 309, 1215 (2005)

    ADS  Google Scholar 

  60. M.B. Nardelli et al., Phys. Rev. Lett. 81, 4656 (1996)

    ADS  Google Scholar 

  61. A.J. Stone, D.J. Wales, Chem. Phys. Lett. 128, 501 (1986)

    ADS  Google Scholar 

  62. B. Peng et al., Nat. Nanotechnol. 3, 626 (2008)

    Google Scholar 

  63. J.Y. Huang et al., Phys. Rev. Lett. 98, 185501 (2007)

    ADS  Google Scholar 

  64. L. Sun et al., Science 312, 1199 (2006)

    ADS  Google Scholar 

  65. A.V. Krasheninnikov et al., Chem. Phys. Lett. 418, 132 (2006)

    ADS  Google Scholar 

  66. A.V. Krasheninnikov, J. Banhart, Nat. Mater. 6, 723 (2007)

    ADS  Google Scholar 

  67. N.R. Wilson, J.V. Macpherson, Nat. Nanotech. 4, 483 (2009)

    ADS  Google Scholar 

  68. H.J. Dai et al., Nature 384, 147 (1996)

    ADS  Google Scholar 

  69. S.S. Wong et al., Nature 394, 52 (1998)

    ADS  Google Scholar 

  70. P. Kim, C. Lieber, Science 286, 2148 (1999)

    Google Scholar 

  71. H.J. Dai, C.M. Lieber, Ann. Rev. Phys. Chem. 44, 237 (1993)

    ADS  Google Scholar 

  72. S.S. Wong et al., J. Am. Chem. Soc. 120 B, 557 (1998)

    Google Scholar 

  73. B.W. Smith et al., Nature 396, 323 (1998)

    ADS  Google Scholar 

  74. M. Sano et al., Science 293, 1299 (2001)

    ADS  Google Scholar 

  75. D.Y. Zhong et al., Appl. Phys. Lett. 83, 4423 (2003)

    ADS  Google Scholar 

  76. G.Y. Zhang et al., Science 300, 472 (2003)

    ADS  Google Scholar 

  77. W.A. de Heer et al., Science 307, 907 (2005)

    ADS  Google Scholar 

  78. A.V. Melechko et al., J. Appl. Phys. 97, 041301 (2005)

    ADS  Google Scholar 

  79. B.C. Satishkumar et al., Appl. Phys. Lett. 77, 2530 (2000)

    ADS  Google Scholar 

  80. P.W. Chin et al., Appl. Phys. Lett. 80, 3811 (2002)

    ADS  Google Scholar 

  81. M. Terrones et al., Phys. Rev. Lett. 89, 075505 (2002)

    ADS  Google Scholar 

  82. T. Okazaki et al., J. Am. Chem. Soc. 123, 9673 (2001)

    Google Scholar 

  83. M. Koshino et al., Science 316, 853 (2007)

    ADS  Google Scholar 

  84. G.Y. Zhang, E.G. Wang, Appl. Phys. Lett. 82, 1926 (2003)

    ADS  Google Scholar 

  85. R.R. Meyer et al., Science 289, 1324 (2000)

    ADS  Google Scholar 

  86. K. Hirahara et al., Phys. Rev. Lett. 85, 5384 (2000)

    ADS  Google Scholar 

  87. K. Suenaga et al., Science 290, 2280 (2000)

    ADS  Google Scholar 

  88. J.H. Lee et al., Nature 415, 1005 (2005)

    ADS  Google Scholar 

  89. D. Nishide et al., Chem. Phys. Lett. 428, 356 (2006)

    ADS  Google Scholar 

  90. T. Takenobu et al., Nat. Mater. 2, 683 (2003)

    ADS  Google Scholar 

  91. M.S. Strano, Nat. Mater. 5, 433 (2006)

    ADS  Google Scholar 

  92. J.C. Grunlan et al., Nano Lett. 6, 911 (2006)

    ADS  Google Scholar 

  93. M. Mertig, Info Phystech, VDi Technologiezentrum Nr. 65/2006

    Google Scholar 

  94. L. Letellier et al., Res. Microbiol. 154, 283 (2004)

    Google Scholar 

  95. A. Rustom et al., Science 303, 1007 (2004)

    ADS  Google Scholar 

  96. Y. Oshima et al., Phys. Rev. Lett. 91, 205503 (2003)

    ADS  Google Scholar 

  97. Y.C. Sui et al., Appl. Phys. Lett. 84, 1525 (2004)

    ADS  Google Scholar 

  98. Y. Sun et al., Adv. Mater. 15, 641 (2003)

    Google Scholar 

  99. G. Tourillon et al., Electrochem. Sol. Stat. Lett. 3, 20 (2000)

    Google Scholar 

  100. K. Nielsch et al., Adv. Eng. Mater. 7, 217 (2005)

    Google Scholar 

  101. Y.H. Tang et al., Phys. Rev. Lett. 95, 116102 (2005)

    ADS  Google Scholar 

  102. J. Goldberger et al., Nature 422, 599 (2003)

    ADS  Google Scholar 

  103. A. Celik-Aktas et al., Appl. Phys. Lett. 86, 133110 (2005)

    ADS  Google Scholar 

  104. C.Y. Zhi et al., J. Appl. Phys. 91, 5325 (2002)

    ADS  Google Scholar 

  105. Cuong Pham-Huu et al., J. Catalysis 200, 400 (2001)

    Google Scholar 

  106. M. Remskar et al., Science 292, 479 (2001)

    ADS  Google Scholar 

  107. R.L. D. Whitby et al., Appl. Phys. Lett. 79, 4574 (2001)

    ADS  Google Scholar 

  108. J.P. Zou et al., Appl. Phys. Lett. 80, 1079 (2002)

    ADS  Google Scholar 

  109. H.J. Fan et al., Nat. Mater. 5, 627 (2006)

    ADS  Google Scholar 

  110. J.L. Shen et al., J. Phys.: Condens. Matter 15, L527 (2003)

    Google Scholar 

  111. P. Levy et al., Appl. Phys. Lett. 83, 5247 (2003)

    ADS  Google Scholar 

  112. A. Greiner et al., Appl. Microbiol. Technol. 71, 387 (2006)

    Google Scholar 

  113. J.E. Reiner et al., Proc. Natl. Acad. Sci. USA 103, 1173 (2006)

    ADS  Google Scholar 

  114. J.H. Lee et al., Proc. Natl. Acad. Sci. USA 104, 20410 (2007)

    ADS  Google Scholar 

  115. G.Y. Zhang et al., J. Appl. Phys. 91, 9324 (2002)

    ADS  Google Scholar 

  116. J.P. Cheng et al., Appl. Phys. Lett. 85, 5140 (2004)

    ADS  Google Scholar 

  117. Y.B. Mao, S.S. Wong, J. Am. Chem. Soc. 128, 8217 (2006)

    Google Scholar 

  118. M. Nath et al., Chem. Phys. Lett. 368, 690 (2003)

    ADS  Google Scholar 

  119. M. Terrones et al., Materials Today 10, May 2007, p. 30

    Google Scholar 

  120. J. Robertson, Materials Today, October 2004, p. 46

    Google Scholar 

  121. R.H. Baughman et al., Science 292, 787 (2002)

    ADS  Google Scholar 

  122. K. Jiang et al., J. Mater. Chem. 14, 37 (2004)

    Google Scholar 

  123. Y.L. Lie et al., Science 304, 276 (2004)

    ADS  Google Scholar 

  124. N. de Jonge et al., Nature 420, 393 (2002)

    ADS  Google Scholar 

  125. J.H. Hafner et al., Am. Chem. Soc. 121, 9750 (1999)

    Google Scholar 

  126. A.P. Graham et al., Diamond Relat. Mater. 13, 1296 (2004)

    ADS  Google Scholar 

  127. Y. Zhang et al., Appl. Phys. Lett. 79, 3155 (2001)

    ADS  Google Scholar 

  128. J.J. Plombon et al., Appl. Phys. Lett. 90, 063106 (2007)

    ADS  Google Scholar 

  129. A. Javey et al., Nano Lett. 4, 447 (2004)

    ADS  Google Scholar 

  130. M.S. Arnold et al., Nat. Nanotech. 1, 60 (2006)

    ADS  Google Scholar 

  131. S.E. Thompson, S. Parthasarthy, Materials Today 9 (6), 20 (2006)

    Google Scholar 

  132. K. Jensen et al., Nat. Nanotech. 3, 533 (2008)

    ADS  Google Scholar 

  133. B. Lassagne et al., Nano Lett. 8, 3735 (2008)

    ADS  Google Scholar 

  134. H.-Y. Chiu et al., Nano Lett. 8, 4342 (2008)

    ADS  Google Scholar 

  135. B. Lassagne et al., Science 1174290 (2009). doi: 10.1126/science

    Google Scholar 

  136. G.A. Steele, Science 1176076 (2009). doi: 10.1126 science

    Google Scholar 

  137. Y.C. Chen et al., Appl. Phys. Lett. 81, 975 (2002)

    ADS  Google Scholar 

  138. D.Y. Zhang et al., Appl. Phys. Lett. 79, 3500 (2001)

    ADS  Google Scholar 

  139. F. Villalpando-Paez et al., Phys. Chem. Lett. 386, 137 (2004)

    Google Scholar 

  140. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    ADS  MATH  Google Scholar 

  141. J.C. Meyer et al., Nature 446, 60 (2007)

    ADS  Google Scholar 

  142. Y. Zhang et al., Nature 438, 201 (2005)

    ADS  Google Scholar 

  143. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  144. M.I. Katsnelson, Materials Today 10, Jan-Feb 2007, p. 20

    Google Scholar 

  145. A.H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  146. K.L. Wang et al., Proc. IEE. 96, 212 (2008)

    Google Scholar 

  147. M. Choucair et al., Nat. Nanotechnol. 4, 30 (2009)

    ADS  Google Scholar 

  148. G. Brumfiel, Nature 458, 390 (2009)

    Google Scholar 

  149. E. Stolyarova et al., Proc. Natl. Acad. Sci. USA 104, 9209 (2007)

    ADS  Google Scholar 

  150. M.H. Gass et al., Nat. Nanotechnol. 3, 676 (2008)

    ADS  Google Scholar 

  151. J.C. Meyer et al., Nano Lett. 8, 3582 (2008)

    ADS  Google Scholar 

  152. C.Ö. Girit et al., Science 323, 1705 (2009)

    ADS  Google Scholar 

  153. J.-W. Seo et al., Angew. Chem. Int. Ed. 46, 8828 (2007)

    Google Scholar 

  154. F.D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    MathSciNet  ADS  Google Scholar 

  155. K.S. Novoselov et al., Science 315, 1379 (2007)

    Google Scholar 

  156. Z.Q. Li et al., Nat. Phys. 4, 532 (2008)

    Google Scholar 

  157. W.Y. Kim, K.S. Kim, Nat. Nanotechnol. 3, 408 (2008)

    Google Scholar 

  158. Y.M. Zuev et al., Phys. Rev. Lett. 102, 096807 (2009)

    ADS  Google Scholar 

  159. L. Tabasztó et al., Nat. Nanotechnol. 3, 397 (2008)

    Google Scholar 

  160. X.T. Jia et al., Science 323, 1701 (2009)

    ADS  Google Scholar 

  161. L. Jiao et al., Nature 458, 872 (2009)

    ADS  Google Scholar 

  162. Y.-M. Lin et al., Nano Lett. 9, 422 (2009)

    ADS  Google Scholar 

  163. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, NY, 1976)

    Google Scholar 

  164. K.S. Novoselov et al., Nature 438, 197 (2005)

    ADS  Google Scholar 

  165. E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006)

    ADS  Google Scholar 

  166. K.S. Novoselov et al., Nat. Phys. 2, 177 (2006)

    Google Scholar 

  167. J.M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  168. D.C. Elias et al., Science 323, 610 (2009); Nat. Mater. 8, 163 (2009)

    ADS  Google Scholar 

  169. R.C. Haddon, Physics Today, Nov. 1992

    Google Scholar 

  170. T. Hara et al., Phys. Rev. B 68, 045401 (2003)

    MathSciNet  ADS  Google Scholar 

  171. F. Dieterich et al., Science 252, 548 (1991)

    ADS  Google Scholar 

  172. K. Kikuchi et al., Nature 357, 142 (1992)

    ADS  Google Scholar 

  173. K. Kikuchi et al., Chem. Phys. Lett. 188, 177 (1992)

    ADS  Google Scholar 

  174. H. Shinohara et al., J. Phys. Chem. 95, 8449 (1991)

    Google Scholar 

  175. H. Prinzbach et al., Nature 407, 60 (2000)

    ADS  Google Scholar 

  176. P.R. Buseck et al., Science 257, 215 (1992)

    ADS  Google Scholar 

  177. L. Becker et al., Nature 400, 217 (1999)

    ADS  Google Scholar 

  178. M. Bottini, T. Mustelin, Nat. Nanotechn. 2, 599 (2007)

    ADS  Google Scholar 

  179. K. Kikuchi et al., Chem. Phys. Lett. 216, 67 (1993)

    ADS  Google Scholar 

  180. H. Shinohara et al., J. Phys. Chem. 96, 3571 (1992)

    Google Scholar 

  181. T. Guo et al., Science 257, 1661 (1992)

    ADS  Google Scholar 

  182. T. Pradeep et al., J. Am. Chem. Soc. 114, 2272 (1992)

    Google Scholar 

  183. D.S. Bethune et al., Nature 363, 605 (1993)

    ADS  Google Scholar 

  184. E. Gillan et al., J. Phys. Chem. 96, 6869 (1992)

    Google Scholar 

  185. C.R. Wang et al., Nature 408, 426 (2000)

    ADS  Google Scholar 

  186. K. Suenaga et al., Phys. Rev. Lett. 90, 055506 (2003)

    ADS  Google Scholar 

  187. R. Yamachika et al., Science 304, 281 (2004)

    ADS  Google Scholar 

  188. J. Zhao et al., Phys. Rev. Lett. 95, 045502 (2005)

    ADS  Google Scholar 

  189. L. Hultman et al., Phys. Rev. Lett. 87, 225503 (2001)

    ADS  Google Scholar 

  190. H. Eickenbusch, VDI Technologiezentrum, Technologieanalyse Fullerene (1993)

    Google Scholar 

  191. R. Taylor, D.R.M. Walton, Nature 363, 685 (1993)

    ADS  Google Scholar 

  192. F. Banhart et al., Phys. Rev. Lett. 90, 185502 (2003)

    ADS  Google Scholar 

  193. R. Jasti et al., J. Am. Chem. Soc. 130, 17646 (2008)

    Google Scholar 

  194. D. Mössinger et al., Angew. Chem. Int. Edn. 46, 6802 (2007)

    Google Scholar 

  195. K.P. Velikov, A. van Blaaderen, Langmuir 17, 4779 (2001)

    Google Scholar 

  196. J.J. Zhu et al., Adv. Mater. 15, 156 (2003)

    Google Scholar 

  197. G.E. Sigmon et al., Angew. Chem. Int. Edn. 48, 2737 (2009)

    Google Scholar 

  198. N.G. Szwacki et al., Phys. Rev. Lett. 98, 166804 (2007)

    ADS  Google Scholar 

  199. S. Bulusu et al., Proc. Natl. Acad. Sci. USA 103, 8326 (2006)

    ADS  Google Scholar 

  200. Nature 441, 386 (2006)

    Google Scholar 

  201. L.-W. Yin et al., Small. 1, 1094 (2005)

    Google Scholar 

  202. C.J. Davisson, L.H. Germer, Nature 119, 558 (1927)

    ADS  Google Scholar 

  203. P. Ball, Nature 453, 22 (2008)

    Google Scholar 

  204. M. Arndt et al., Nature 401, 680 (1999)

    ADS  Google Scholar 

  205. O. Nairz et al., Am. J. Phys. 71, 319 (2003)

    ADS  Google Scholar 

  206. H.F. Talbot, Phil. Mag. 9, 401 (1836)

    Google Scholar 

  207. E. Lau, Ann. Phys. (Leipzig) 6, 417 (1948)

    ADS  Google Scholar 

  208. B. Brezger et al., J. Opt. B: Quantum Semiclass. Opt. 5, S82 (2003)

    ADS  Google Scholar 

  209. S. Gerlich et al., Nat. Phys. 3, 711 (2007)

    Google Scholar 

  210. M. Arndt et al., Phys. Unserer Zeit 37, Nr. 1, 24 (2006)

    ADS  Google Scholar 

  211. A.I.M. Rae, Nature 401, 651 (1999)

    ADS  Google Scholar 

  212. L. Hackermüller et al., Phys. Rev. Lett. 91, 090408 (2003)

    ADS  Google Scholar 

  213. L. Hackermüller et al., Nature 427, 711 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Eckhardt Schaefer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaefer, HE. (2010). Carbon Nanostructures – Tubes, Graphene , Fullerenes , Wave-Particle Duality . In: Nanoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10559-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10559-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10558-6

  • Online ISBN: 978-3-642-10559-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics