Skip to main content

QTL Mapping for Forage Quality-Related Traits in Barley

  • Conference paper
Bio-Science and Bio-Technology (BSBT 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 57))

Included in the following conference series:

  • 547 Accesses

Abstract

Despite the importance of barley in animal feed, its forage quality has not been enough used as a selection criterion in breeding programs. To look for the genomic regions affecting barley forage quality, a population of 72 F1 − derived doubled haploid lines (DH) from the cross ‘Steptoe/ Morex’ and their two parents were planted in Karaj and Zabol provinces of Iran, in each under a randomized complete block arrangement with two replications. Forage samples were oven-dried and ground and dry matter digestibility (DMD), acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin, crude fiber (CF), crude protein (CP), water-soluble carbohydrates and ash content were measured by NIRS. Analyses of variance showed that genotype, environment and ‘genotype - environment’ interaction have significant effects on almost all studied traits. Several QTLs were resolved for each studied trait in both environments. Highest LOD scores were obtained for CF, ADF and DMD on chromosome 2H and for ash and CP on chromosomes 3H and 5H, respectively. QTLs for NDF were present on all chromosomes except 4H and 7H. ‘QTL-environment’ interaction and the specificity of these QTLs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, W.C.: Barley. In: Crop Production, Evolution, History and Technology, pp. 174–291. John Wiley, New York (1995)

    Google Scholar 

  2. Coleman, S.E., Moore, J.E.: Feed quality and animal performance. Field Crops Res. 84, 17–29 (2003)

    Article  Google Scholar 

  3. Lübberstedt, T., Melchinger, E.A., Klein, D., Degenhardt, H., Paul, C.: QTL mapping in test crosses of flint lines of maize: II. Comparison of different testers for forage quality traits. Crop Sci. 37, 1913–1922 (1997)

    Google Scholar 

  4. Smith, K.F., Reed, M., Foot, J.Z.: An assessment of the relative importance of specific traits for the genetic improvement of nutritive value in dairy pasture. Grass Forage Sci. 52, 167–175 (1997)

    Article  Google Scholar 

  5. Casler, M.D.: Breeding forage crop for increased nutritive value. Adv. Agron. 71, 51–107 (2001)

    Article  Google Scholar 

  6. Cardinal, A.J., Lee, M., Moore, K.J.: Genetic mapping and analysis of qualitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet. 106, 866–874 (2003)

    Google Scholar 

  7. Han, F., Ullrich, S.E., Romagosa, I., Clancy, J.A., Froseth, J.A., Wesenberg, D.M.: Quantitative genetic analysis of acid detergent fiber content in barley grain. J. Cereal Sci. 38, 167–172 (2003)

    Article  Google Scholar 

  8. Cogan, N.O.I., Smith, K.F., Yamada, T., Francki, M.G., Vecchies, A.C., Jones, E.S., Spangenberg, G.C., Forster, J.W.: QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet. 110, 364–380 (2005)

    Article  Google Scholar 

  9. DeBoever, J.L., Cottyn, F.X., Wainman, F.W., Vanacker, J.M.: The use of an enzymatic technique to predict digestibility, metabolisable and net energy of compound feedstuffs for ruminants. Anim. Feed Sci. Technol. 14, 203–214 (1986)

    Article  Google Scholar 

  10. Mould, F.L.: Predicting feed quality-chemical analysis and in vitro evaluation. Field Crops Res. 84, 31–44 (2003)

    Article  Google Scholar 

  11. Tessema, Z., Baars, R.M.T.: Chemical composition, in vitro dry matter digestibility and ruminal degradation of Napier grass (Pennisetum purpureum (L.) Schumach.) mixed with different levels of Sesbania sesban (L.) Merr. Anim. Feed Sci. Technol. 117, 29–41 (2004)

    Article  Google Scholar 

  12. Jung, H.J.G.: Analysis of Forage Fiber and Cell Walls in Ruminant Nutrition. J. Nutr. 127, S810–S813 (1997)

    Google Scholar 

  13. Roberts, C.A., Workman, J., Reeves, J.B.: Near-infrared spectroscopy in agriculture. ASA-CSSA-SSSA, Inc, Madison WI (2004)

    Google Scholar 

  14. Mentink, R.L., Hoffman, P.C., Bauman, L.M.: Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. J. Dairy Sci. 89, 2320–2326 (2006)

    Google Scholar 

  15. Marquez-Cedillo, L.A., Hayes, P.M., Jones, B.L., Kleinhofs, A., Legge, W.G., Rossnagel, B.G., Sato, K., Ullrich, S.E., Wesenberg, D.M.: QTL analysis of malting quality in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet. 101, 173–184 (2000)

    Article  Google Scholar 

  16. Thomas, W.T.B., Baird1, E., Fuller, J.D., Lawrence, P., Young, G.R., Russell, J., Ramsay, L., Waugh, R., Powell, W.: Identification of a QTL decreasing yield in barley linked to Mlo powdery mildew resistance. Mol. breed. 4, 381–393 (1998)

    Google Scholar 

  17. Peighambari, S.A., Yazdi Samadi, B., Nabipour, A., Charmet, G., Sarrafi, A.: QTL analysis for agronomic traits in a barley doubled haploids population grown in Iran. Plant Sci. 169, 1008–1013 (2005)

    Article  Google Scholar 

  18. Han, F., Ullrich, S.E., Kleinhofs, A., Jones, B.L., Hayes, P.M., Wesenberg, D.M.: Fine structure mapping of the barley chromosome 1 centromere region containing malt quality QTL. Theor. Appl. Genet. 95, 903–910 (1997)

    Article  Google Scholar 

  19. Molina-Cano, J.L., Francwsch, M., Perez-Vendrell, A.M., Ramo, T., Voltas, J., Brufau, J.: Genetic and environmental variation in malting and feed quality of barley. J. Cereal Sci. 25, 37–47 (1997)

    Article  Google Scholar 

  20. Borem, A., Mather, D.E., Rosmusson, D.C., Fulcher, R.G., Hayes, P.M.: Mapping quantitative trait loci for starch granule traits in barley. J. Cereal Sci. 29, 153–160 (1999)

    Article  Google Scholar 

  21. Beecher, B., Smidansky, E.D., See, D., Blake, T.K., Giroux, M.J.: Mapping and sequence analysis of barley hordoindolines. Theor. Appl. Genet. 102, 833–840 (2001)

    Article  Google Scholar 

  22. Chen, F., Prehn, D., Hayes, P.M., Mulrooney, D., Corey, A., Vivar, H.: Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. horde.). Theor. Appl. Genet. 88, 215–219 (1994)

    Google Scholar 

  23. Steffenson, B.J., Hayes, P.M., Kleinhofs, A.: Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. sp. teres) and spot blotch (Cochliobolus sativus) in barley. Theor. Appl. Genet. 92, 552–558 (1996)

    Article  Google Scholar 

  24. Mickelson, S., See, D., Meyer, F.D., Garner, J.P., Foster, C.R., Blake, T.K., Fischer, A.M.: Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J. Exp. Bot. 54, 801–812 (2003)

    Article  Google Scholar 

  25. Abdel-Haleem, H., Giroux, M., Talbert, H., Bowman, J., Kanazin, V., Blake, T.: Identification of QTLs controlling the feed quality of barley. In: Plant & Animal Genome XII Conf., San Diego, CA, January 10-14, p. 468 (2004)

    Google Scholar 

  26. Marquez-Cedillo, L.A., Hayes, P.M., Kleinhofs, A., Legge, W.G., Rossnagel, B.G., Sato, K., Ullrich, S.E., Wesenberg, D.M.: QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet. 103, 625–637 (2001)

    Article  Google Scholar 

  27. Ungerer, M.C., Halldorsdottir, S.S., Purugganan, M.D., Mackay, T.F.: Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics 165, 353–365 (2003)

    Google Scholar 

  28. Malosetti, M., Voltas, J., Romagosa, I., Ullrich, S.E., van Eeuwijk, F.A.: Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137, 139–145 (2004)

    Article  Google Scholar 

  29. Mayo, O.: Interaction and quantitative trait loci. Aust. J. Exp. Agric. 44, 1135–1140 (2004)

    Article  Google Scholar 

  30. Chen, F., Hayes, P.M.: A comparison of Hordeum bulbosum-mediated haploid production efficiency in barley using in vitro floret and tiller culture. Theor. Appl. Genet. 77, 701–704 (1989)

    Google Scholar 

  31. SAS Institute, SAS State user’s guide 9.1: Statistics. SAS Inst., Cary, NC (1992)

    Google Scholar 

  32. Singh, M., Ceccarelli, S., Hamblin, J.: Estimation of heritability from varietal trials data. Theor. Appl. Genet. 86, 437–441 (1993)

    Article  Google Scholar 

  33. Kleinhofs, A., Kilian, A., Saghai Maroof, R.M., Biyashev, R.M., Hayes, P.M., Qchen, F., Laption, N., Fenwick, A., Blake, T.K., Kanazin, V., Ananiev, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S.J., Liu, B., Sorrells, M., Heun, M., Franckowiak, J.D., Hoffman, D., Skaden, R., Steffeson, B.J.: A molecular, isozyme and morphological map of the barley (Hordeum vulgare L.) genome. Theor. Appl. Genet. 86, 705–712 (1993)

    Article  Google Scholar 

  34. Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmmusson, D., Sorrells, M., Ullrich, S.E., Wesenberg, D., Kleinhofs, A.: Quantitative trait locus effects and environmental interaction in a Sample of North American barley germplasm. Theor. Appl. Genet. 87, 392–401 (1993)

    Article  Google Scholar 

  35. Wang, S., Basten, C.J., Zeng, Z.B.: Windows QTL cartographer 2.5, Department of Statistics, North Carolina State University, Raleigh, NC (2007), http://statgen.ncsu.edu/qtlcart/wQTLcart.htm

  36. Churchill, G.A., Doerge, R.W.: Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994)

    Google Scholar 

  37. Jansen, R.C., Stam, P.: High resolution of quantitative traits into multiple loci via interval mapping. Genetics 138, 1447–1455 (1994)

    Google Scholar 

  38. Zeng, Z.B.: Precision mapping of quantitative trait loci. Genetics 136, 1457–1468 (1994)

    Google Scholar 

  39. Lebreton, C.M., Visscher, P.M., Haley, C.S., Semikhodskii, A., Quarrie, S.A.: A nonparametric bootstrap method for testing close linkage vs. pleiotropy on coincident quantitative trait loci. Genetics 150, 931–943 (1998)

    Google Scholar 

  40. Romagosa, I., Han, F., Ullrich, S.E., Hayes, P.M., Wesenberg, D.M.: Verification of yield QTL through realized molecular marker- assisted selection responses in a barley cross. Mol. Breed. 5, 143–152 (1999)

    Article  Google Scholar 

  41. Zhu, H., Briceno, G., Dovel, R., Hayes, P.M., Liu, B.H., Liu, C.T., Ullrich, S.E.: Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor. Appl. Genet. 98, 772–779 (1999)

    Article  Google Scholar 

  42. Bregitzer, P., Campbell, R.D.: Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci. 41, 173–179 (2001)

    Article  Google Scholar 

  43. Ray, I.M., Karn, J.F., Dara, S.T.: Heritabilities of nutritive quality factors and interrelationships with yield in tetraploid crested wheatgrass. Crop Sci. 36, 1488–1491 (1996)

    Article  Google Scholar 

  44. Mertens, D.R.: Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 64, 1548–1558 (1987)

    Google Scholar 

  45. Reid, R.L., Jung, G.A., Thayne, W.V.: Relationships between nutritive quality and fiber components of cool season and warm season forages: A retrospective study. J. Anim. Sci. 66, 1275–1291 (1988)

    Google Scholar 

  46. McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A.: Animal Nutrition, 5th edn. Longman Scientific & Technical, New York (1995)

    Google Scholar 

  47. Perry, T.W., Cullison, A.E., Lowrey, R.S.: Feeds and Feeding, 5th edn. Prentice Hall, New Jersey (1999)

    Google Scholar 

  48. Newman, C.W., Newman, R.K.: Nutritional aspect of barley seed structure and composition. In: Shewry, P.R. (ed.) Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, pp. 351–368 (1992)

    Google Scholar 

  49. Ullrich, S.E., Han, F., Froseth, J.A., Jones, B.L., Newman, C.W., Wesenberg, D.M.: Mapping of loci that affect carbohydrate content in barley grain. In: Slinkard, A., Scoles, G., Rossnagel, B. (eds.) Proceedings of the V Int’l Oat Conf. & VII Int’l Barley Genet. Symp. Poster Ses., vol. 1, pp. 141–143. Univ. of Saskatchewan Ext. Press, Saskatoon (1996)

    Google Scholar 

  50. Frègeau-Ried, J., Choo, T.M., Ho, K.M., Martin, R.C., Konishi, T.: Comparisons of two-row and six-row barley for chemical composition using doubled-haploid lines. Crop Sci. 41, 1737–1743 (2001)

    Article  Google Scholar 

  51. Oziel, A., Hayes, P.M., Chen, F.Q., Jones, B.: Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed 115, 43–51 (1996)

    Article  Google Scholar 

  52. Mather, D.E., Tinker, N.A., LaBerge, D.E., Edney, M., Jones, B.L., Rossnagle, B.G., Legge, W.G., Briggs, K.G., Irvine, R.B., Falk, D.E., Kasha, K.J.: Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci. 37, 544–554 (1997)

    Article  Google Scholar 

  53. Ayoub, M., Armstrong, E., Bridger, G., Fortin, M.G., Mather, D.E.: Marker-based selection in barley for a QTL region affecting alpha amylase activity of malt. Crop Sci. 43, 556–561 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taleei, A., Siahsar, B.A., Peighambari, S.A. (2009). QTL Mapping for Forage Quality-Related Traits in Barley. In: Ślęzak, D., Arslan, T., Fang, WC., Song, X., Kim, Th. (eds) Bio-Science and Bio-Technology. BSBT 2009. Communications in Computer and Information Science, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10616-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10616-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10615-6

  • Online ISBN: 978-3-642-10616-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics