Skip to main content

Pattern Structures for Analyzing Complex Data

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5908))

Abstract

For data given by binary object-attribute datatables Formal Concept Analysis (FCA) provides with a means for both convenient computing hierarchies of object classes and dependencies between sets of attributes used for describing objects. In case of data more complex than binary to apply FCA techniques, one needs scaling (binarizing) data. Pattern structures propose a direct way of processing complex data such as strings, graphs, numerical intervals and other. As compared to scaling (binarization), this way is more efficient from the computational point of view and proposes much better vizualization of results. General definition of pattern structures and learning by means of them is given. Two particular cases, namely that of graph pattern structures and interval pattern structures are considered. Applications of these pattern structures in bioinformatics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blinova, V.G., Dobrynin, D.A., Finn, V.K., Kuznetsov, S.O., Pankratova, E.S.: Toxicology analysis by means of the JSM-method. Bioinformatics 19, 1201–1207 (2003)

    Article  Google Scholar 

  2. Chaudron, L., Maille, N.: Generalized Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 357–370. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Férré, S., Ridoux, O.: A Logical Generalization of Formal Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, Springer, Heidelberg (2000)

    Google Scholar 

  4. Finn, V.K.: On Machine-Oriented Formalization of Plausible Reasoning in the Style of F. Backon–J. S. Mill. Semiotika Informatika 20, 35–101 (1983) (in Russian)

    MATH  MathSciNet  Google Scholar 

  5. Finn, V.K.: Plausible Reasoning in Systems of JSM Type. Itogi Nauki i Tekhniki, Seriya Informatika 15, 54–101 (1991) (in Russian)

    Google Scholar 

  6. Ganter, B., Kuznetsov, S.: Formalizing Hypotheses with Concepts. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 342–356. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Ganter, B., Kuznetsov, S.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based Data Mining with Scaled Labeled Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004)

    Google Scholar 

  9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  10. Kaytoue, M., Duplessis, S., Kuznetsov, S.O., Napoli, A.: Two FCA-Based Methods for Mining Gene Expression Data. In: Ferre, S., Rudoplh, S. (eds.) ICFCA 2009. LNCS (LNAI), pp. 251–266. Springer, Heidelberg (2009)

    Google Scholar 

  11. Kryszkiewicz, M.: Concise Representations of Association Rules. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 92–109. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Kuznetsov, S.O.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki, ser. Informatika 15, 17–50 (1991)

    Google Scholar 

  13. Kuznetsov, S.O.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)

    Google Scholar 

  14. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 189–216 (2002)

    Article  MATH  Google Scholar 

  15. Kuznetsov, S.O., Samokhin, M.V.: Learning Closed Sets of Labeled Graphs for Chemical Applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005)

    Google Scholar 

  16. Liquiere, M., Sallantin, J.: Structural Machine Learning with Galois Lattice and Graphs. In: Proc. Int. Conf. Machine Learning ICML 1998 (1998)

    Google Scholar 

  17. Luxenburger, M.: Implications partielle dans un contexte. Math. Sci. Hum. (1991)

    Google Scholar 

  18. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Minining of Association Rules Based on Using Closed Itemset Lattices. J. Inf. Systems 24, 25–46 (1999)

    Article  Google Scholar 

  19. Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005)

    Google Scholar 

  20. Yan, X., Han, J.: CloseGraph: Mining closed frequent graph patterns. In: Getoor, L., Senator, T., Domingos, P., Faloutsos, C. (eds.) Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2003), pp. 286–295. ACM Press, New York (2003)

    Chapter  Google Scholar 

  21. Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuznetsov, S.O. (2009). Pattern Structures for Analyzing Complex Data. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10646-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10645-3

  • Online ISBN: 978-3-642-10646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics