Skip to main content

Part of the book series: Adaptation Learning and Optimization ((ALO,volume 2))

Abstract

This chapter presents the design of a space mission at a preliminary stage, when uncertainties are high. At this particular stage, an insufficient consideration for uncertainty could lead to a wrong decision on the feasibility of the mission. Contrary to the traditional margin approach, the methodology presented here explicitly introduces uncertainties in the design process. The overall system design is then optimised, minimising the impact of uncertainties on the optimal value of the design criteria. Evidence Theory, used as the framework to model uncertainties, is presented in details. Although its use in the design process would greatly improve the quality of the design, it increases significantly the computational cost of any multidisciplinary optimisation. Therefore, two approaches to tackle an Optimisation Problem Under Uncertainties are proposed: (a) a direct solution through a multi-objective optimisation algorithm and (b) an indirect solution through a clustering algorithm. Both methods are presented, highlighting the techniques used to reduce the computational time. It will be shown in particular that the indirect method is an attractive alternative when the complexity of the problem increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, H., Renaud, J.E., Preston, E.L.: Trust region managed reliability based design optimization using evidence theory. In: Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, vol. 5, pp. 3449–3463 (2003)

    Google Scholar 

  2. Agarwal, H., Renaud, J.E., Preston, E.L., Padmanabhan, D.: Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliability Engineering and System Safety 85(1-3), 281–294 (2004)

    Article  Google Scholar 

  3. Bae, H.R., Grandhi, R.V., Canfield, R.A.: Uncertainty quantification of structural response using evidence theory. In: Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, vol. 4, pp. 2135–2145 (2002)

    Google Scholar 

  4. Bauer, M.: Approximation algorithms and decision making in the dempster-shafer theory of evidence - an empirical study. International Journal of Approximate Reasoning 17( 2-3), 217–237 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bunday, B.D.: Basic Linear programming. Hodder Arnold (1984)

    Google Scholar 

  6. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1965)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6( 2), 182–197 (2002)

    Article  Google Scholar 

  8. Dempster, A.P.: New methods for reasoning towards posterior distributions based on sample data. The Annals of Mathematical Statistics 37(2), 355–374 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  10. Du, X., Wang, Y., Chen, W.: Methods for robust multidisciplinary design. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 41st, Atlanta, GA, no. 1785 in AIAA 2000 (2000)

    Google Scholar 

  11. Dubois, D., Prade, H.: Fuzzy sets, probability and measurement. European Journal of Operational Research 40(2), 135–154 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferson, S., Nelsen, R.B., Hajagos, J., Berleant, D.J., Zhang, J., Tucker, W.T., Ginzburg, L.R., Oberkampf, W.L.: Dependence in probabilistic modeling, dempster-shafer theory, and probability bounds analysis. Tech. Rep. SAND2004-3072, Sandia National Laboratories (2004)

    Google Scholar 

  13. Hayes, B.: A lucid intervals. American Scientist 91(6), 484–488 (2003)

    Google Scholar 

  14. Helton, J.C.: Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation 57, 3–76 (1997)

    Article  MATH  Google Scholar 

  15. Helton, J.C., Johnson, J., Oberkampf, W.L., Storlie, C.: A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Computer Methods in Applied Mechanics and Engineering 196(37-40 SPEC ISS), 3980–3998 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hoffman, F.O., Hammonds, J.S.: Propagation of uncertainty in risk assessments: The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Analysis 14(5), 707–712 (1994)

    Article  Google Scholar 

  17. Kemble, S.: Interplanetary Mission Analysis and Design. Springer Praxis Books, Heidelberg (2006)

    Google Scholar 

  18. Klir, G.J., Smith, R.M.: On measuring uncertainty and uncertainty-based information: Recent developments. Annals of Mathematics and Artificial Intelligence 32(1-4), 5–33 (2001)

    Article  MathSciNet  Google Scholar 

  19. Kreinovich, V., Xiang, G., Starks, S.A., Longpré, L., Ceberio, M., Araiza, R., Beck, J., Kandathi, R., Nayak, A., Torres, R., Hajagos, J.G.: Towards combining probabilistic and interval uncertainty in engineering calculations: Algorithms for computing statistics under interval uncertainty, and their computational complexity. Reliable Computing 12, 471–501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Limbourg, P.: Multi-objective optimization of problems with epistemic uncertainty. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 413–427. Springer, Heidelberg (2005)

    Google Scholar 

  21. Lophaven, S.N., Nielsen, H.B., Sondergaard, J.: DACE: a MatLab kriging toolbox. Tech. Rep. IMM-TR-2002-12, Technical University of Denmark (2002)

    Google Scholar 

  22. Neumaier, A.: Clouds, fuzzy sets, and probability intervals. Reliable Computing 10(4), 249–272 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Oberkampf, W., Helton, J.C.: Investigation of evidence theory for engineering applications. In: 4th Non-Deterministic Approaches Forum, AIAA, vol. 1569 (2002)

    Google Scholar 

  24. Pate-Cornell, M.E.: Uncertainties in risk analysis: Six levels of treatment. Reliability Engineering and System Safety 54, 95–111 (1996)

    Article  Google Scholar 

  25. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  26. Smarandache, F., Dezert, J.: An introduction to the DSm theory for the combination of paradoxical, uncertain and imprecise sources of information. In: 13th International Congress of Cybernetics and Systems (2005)

    Google Scholar 

  27. Tessem, B.: Approximations for efficient computation in the theory of evidence. Artif. Intell. 61(2), 315–329 (1993)

    Article  MathSciNet  Google Scholar 

  28. Vasile, M.: Robust mission design through evidence theory and multiagent collaborative search. Annals of the New York Academy of Sciences 1065, 152–173 (2005)

    Article  Google Scholar 

  29. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 100(suppl. 1), 9–34 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vasile, M., Croisard, N. (2010). Robust Preliminary Space Mission Design under Uncertainty. In: Tenne, Y., Goh, CK. (eds) Computational Intelligence in Expensive Optimization Problems. Adaptation Learning and Optimization, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10701-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10701-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10700-9

  • Online ISBN: 978-3-642-10701-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics