Skip to main content

Inorganic Mass Spectrometry

  • Chapter
  • First Online:
Mass Spectrometry
  • 11k Accesses

Abstract

Mass spectrometry resulted from an endeavor to analyze gaseous ionic matter. The discovery of isotopes and the determination of their masses and relative abundances, i.e., isotope ratios, were a direct result of the pioneering work of Thomson, Aston, Dempster, and many others [1,2]. Soon, the results of such measurements became the driving force for new discoveries in physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Laeter, J.R.; Kurz, M.D. Alfred Nier and the Sector Field Mass Spectrometer. J. Mass Spectrom. 2006, 41, 847-854.

    Google Scholar 

  2. Budzikiewicz, H.; Grigsby, R.D. Mass Spectrometry and Isotopes: A Century of Research and Discussion. Mass Spectrom. Rev. 2006, 25, 146-157.

    CAS  Google Scholar 

  3. Platzner, I.T.; Habfast, K.; Walder, A.J.; Goetz, A. Modern Isotope Ratio Mass Spectrometry; Platzner, I.T. (ed.); Wiley: Chichester, 1997.

    Google Scholar 

  4. Tuniz, C.; Bird, J.R.; Fink, D.; Herzog, G.F. Accelerator Mass Spectrometry – Ultrasensitive Analysis for Global Science; CRC Press: Boca Raton, 1998.

    Google Scholar 

  5. Taylor, H.E. Inductively Coupled Plasma Mass Spectroscopy; Academic Press: London, 2000.

    Google Scholar 

  6. de Laeter, J.R. Applications of Inorganic Mass Spectrometry; Wiley: New York, 2001.

    Google Scholar 

  7. Becker, J.S. Inorganic Mass Spectrometry: Principles and Applications; Wiley: Chichester, 2008.

    Google Scholar 

  8. Douthitt, C.B. Commercial Development of HR-ICPMS, MC-ICPMS and HRGDMS. J. Anal. Atom. Spectrom. 2008, 23, 685-689.

    CAS  Google Scholar 

  9. Hieftje, G.M. Emergence and Impact of Alternative Sources and Mass Analyzers in Plasma Source MS. J. Anal. Atom. Spectrom. 2008, 23, 661-672.

    CAS  Google Scholar 

  10. de Laeter, J.R.; De Bièvre, P.; Peiser, H.S. Isotope Mass Spectrometry in Metrology. Mass Spectrom. Rev. 1992, 11, 193-245.

    Google Scholar 

  11. Ma, R.; Staton, I.; McLeod, C.W.; Gomez, M.B.; Gomez, M.M.; Palacios, M.A. Assessment of Airborne Platinum Contamination via ICP-Mass Spectrometric Analysis of Tree Bark. J. Anal. Atom. Spectrom. 2001, 16, 1070-1075.

    CAS  Google Scholar 

  12. Stuewer, D.; Jakubowski, N. Elemental Analysis by Inductively Coupled Plasma Mass Spectrometry with Sector Field Instruments: a Progress Report. J. Mass Spectrom. 1998, 33, 579-590.

    CAS  Google Scholar 

  13. Barker, J.; Garner, R.C. Biomedical Applications of Accelerator Mass Spectrometry- Isotope Measurements at the Level of the Atom. Rapid Commun. Mass Spectrom. 1999, 13, 285-293.

    CAS  Google Scholar 

  14. Kutschera, W. Progress in Isotope Analysis at Ultra-Trace Level by AMS. Int. J. Mass Spectrom. 2005, 242, 145-160.

    CAS  Google Scholar 

  15. Becker, J.S.; Zoriy, M.; Becker, J.S.; Pickhardt, C.; Przybylski, M. Determination of Phosphorus and Metals in Human Brain Proteins After Isolation by Gel Electrophoresis by Laser Ablation Inductively Coupled Plasma Source Mass Spectrometry. J. Anal. Atom. Spectrom. 2004, 19, 149-152.

    CAS  Google Scholar 

  16. Guenther, D.; Hattendorf, B. Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Trends Anal. Chem. 2005, 24, 255-265.

    CAS  Google Scholar 

  17. Becker, J.S.; Zoriy, M.; Becker, J.S.; Dobrowolska, J.; Matusch, A. LA-ICPMS in Elemental Imaging of Biological Tissues and in Proteomics. J. Anal. Atom. Spectrom. 2007, 22, 736-744.

    CAS  Google Scholar 

  18. Cheah, E.L.C.; Koh, H.L. Biomedical Applications of Accelerator Mass Spectrometry. Current Anal. Chem. 2008, 4, 102-110.

    CAS  Google Scholar 

  19. Houk, R.S.; Fassel, V.A.; Flesch, G.D.; Svec, H.J.; Gray, A.L.; Taylor, C.E. Inductively Coupled Argon Plasma As an Ion Source for Mass Spectrometric Determination of Trace Elements. Anal. Chem. 1980, 52, 2283-2289.

    CAS  Google Scholar 

  20. Szpunar, J. Metallomics: A New Frontier in Analytical Chemistry. Anal. Bioanal. Chem. 2004, 378, 54-56.

    CAS  Google Scholar 

  21. Lobinski, R.; Schaumlöffel, D.; Szpunar, J. Mass Spectrometry in Bioinorganic Analytical Chemistry. Mass Spectrom. Rev. 2006, 25, 255-289.

    CAS  Google Scholar 

  22. Walker, A.V. Why Is SIMS Underused in Chemical and Biological Analysis? Challenges and Opportunities. Anal. Chem. 2008, 80, 8865-8870.

    CAS  Google Scholar 

  23. Cassiday, L. SIMS and MALDI: Better Together. Anal. Chem. 2008, 80, 8860.

    CAS  Google Scholar 

  24. Griffiths, J. Secondary Ion MS. Anal. Chem. 2008, 80, 7194-7197.

    CAS  Google Scholar 

  25. McDonnell, L.A.; Heeren, R.M.A. Imaging Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 606-643.

    CAS  Google Scholar 

  26. Encinar, J.R.; Ouerdane, L.; Buchmann, W.; Tortajada, J.; Lobinski, R.; Szpunar, J. Identification of Water-Soluble Selenium- Containing Proteins in Selenized Yeast by Size-Exclusion-Reversed- Phase HPLC-ICP-MS Followed by MALDI-TOF and ESI-Q-TOF-MS. Anal. Chem. 2003, 75, 3765-3774.

    Google Scholar 

  27. Adams, F.; Vertes, A. Inorganic Mass Spectrometry of Solid Samples. Fresenius J. Anal. Chem. 1990, 337, 638-647.

    CAS  Google Scholar 

  28. Tanner, S.D.; Baranov, V.I.; Bandura, D.R. Reaction Cells and Collision Cells for ICP-MS: a Tutorial. Spectrochim. Acta, Part B 2002, 57B, 1361-1452.

    CAS  Google Scholar 

  29. Koppenaal, D.W.; Eiden, G.C.; Barinaga, C.J. Collision and Reaction Cells in Atomic MS: Development, Status, and Applications. J. Anal. Atom. Spectrom. 2004, 19, 561-570.

    CAS  Google Scholar 

  30. Becker, J.S.; Dietze, H.J. Inorganic Mass Spectrometric Methods for Trace, Ultratrace, Isotope, and Surface Analysis. Int. J. Mass Spectrom. 2000, 197, 1-35.

    CAS  Google Scholar 

  31. Richter, S.; Goldberg, S.A. Improved Techniques for High Accuracy Isotope Ratio Measurements of Nuclear Materials Using Thermal Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2003, 229, 181-197.

    CAS  Google Scholar 

  32. Halas, S.; Durakiewicz, T. Filament Temperature Stabilizer for a Thermal Ionization Mass Spectrometer. Int. J. Mass Spectrom. 1998, 181, 167-171.

    CAS  Google Scholar 

  33. Kawano, H.; Page, F.M. Experimental Methods and Techniques for Negative- Ion Production by Surface Ionization. Part I. Fundamental Aspects of Surface Ionization. Int. J. Mass Spectrom. Ion Phys. 1983, 50, 1-33.

    CAS  Google Scholar 

  34. Kawano, H.; Hidaka, Y.; Page, F.M. Experimental Methods and Techniques for Negative-Ion Production by Surface Ionization. Part II. Instrumentation and Operation. Int. J. Mass Spectrom. Ion Phys. 1983, 50, 35-75.

    CAS  Google Scholar 

  35. Heumann, K.G.; Schindlmeier, W.; Zeininger, H.; Schmidt, M. Application of an Economical and Small Thermal Ionization Mass Spectrometer for Accurate Anion Trace Analyses. Fresenius' Zeitschrift für Analytische Chemie 1985, 320, 457-462.

    CAS  Google Scholar 

  36. Heumann, K.G.; Kastenmayer, P.; Zeininger, H. Lead and Thallium Trace Determination in the Ppm and Ppb Range in Biological Material by Mass Spectrometric Isotope Dilution Analysis. Fresenius' Zeitschrift für Analytische Chemie 1981, 306, 173-177.

    CAS  Google Scholar 

  37. Waidmann, E.; Emons, H.; Duerbeck, H.W. Trace Determination of Tl, Cu, Pb, Cd, and Zn in Specimens of the Limnic Environment Using Isotope Dilution Mass Spectrometry with Thermal Ionization. Fresenius J. Anal. Chem. 1994, 350, 293-297.

    CAS  Google Scholar 

  38. Schade, U.; Stoll, R.; Röllgen, F.W. Thermal Surface Ionization Mass Spectrometry of Organic Salts. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 337-340.

    CAS  Google Scholar 

  39. Moens, L. Applications of Mass Spectrometry in the Trace Element Analysis of Biological Materials. Fresenius J. Anal. Chem. 1997, 359, 309-316.

    CAS  Google Scholar 

  40. Koppenaal, D.W. Atomic Mass Spectrometry. Anal. Chem. 1990, 62, 303R-324R.

    CAS  Google Scholar 

  41. Verlinden, J.; Gijbels, R.; Adams, F. Application of Spark-Source Mass Spectrometry in the Analysis of Semiconductor Materials. A Review. J. Anal. Atom. Spectrom. 1986, 1, 411-419.

    CAS  Google Scholar 

  42. Jochum, K.P. Elemental Analysis by Spark Source Mass Spectrometry, in Modern Analytical Geochemistry, Gill, R. (ed.); Addison Wesley Longman: Harlow, 1997; Chap. 11, pp. 188-199.

    Google Scholar 

  43. Jochum, K.P.; Stoll, B.; Pfänder, J.A.; Seufert, M.; Flanz, M.; Maissenbacher, P.; Hofmann, M.; Hofmann, A.W. Progress in Multi-Ion Counting Spark- Source Mass Spectrometry (MIC-SSMS) for the Analysis of Geological Samples. Fresenius J. Anal. Chem. 2001, 370, 647-653.

    CAS  Google Scholar 

  44. Saprykin, A.I.; Becker, J.S.; Dietze, H.J. Investigation of the Analytical Performance of Gliding Spark Source Mass Spectrometry for the Trace Analysis of Nonconducting Materials. Fresenius J. Anal. Chem. 1999, 364, 763-767.

    CAS  Google Scholar 

  45. Hoffmann, V.; Kasik, M.; Robinson, P.K.; Venzago, C. Glow Discharge Mass Spectrometry. Anal. Bioanal. Chem. 2005, 381, 173-188.

    CAS  Google Scholar 

  46. Wiedemann, B.; Alt, H.C.; Meyer, J.D.; Michelmann, R.W.; Bethge, K. Spark Source Mass Spectrometric Calibration of the Local Vibrational Mode Absorption of Carbon in Gallium Arsenide on Arsenic Sublattice Sites. Fresenius J. Anal. Chem. 1999, 364, 768-771.

    CAS  Google Scholar 

  47. Gijbels, R.; Bogaerts, A. Recent Trends in Solid Mass Spectrometry. GDMS and Other Methods. Fresenius J. Anal. Chem. 1997, 359, 326-330.

    CAS  Google Scholar 

  48. Stuewer, D. Glow Discharge Mass Spectrometry – A Versatile Tool for Elemental Analysis. Fresenius J. Anal. Chem. 1990, 337, 737-742.

    CAS  Google Scholar 

  49. Marcus, R.K.; King, F.L., Jr.; Harrison, W.W. Hollow Cathode Plume as an Atomization/ Ionization Source for Solids Mass Spectrometry. Anal. Chem. 1986, 58, 972-974.

    CAS  Google Scholar 

  50. Harrison, W.W.; Hess, K.R.; Marcus, R.K.; King, F.L. Glow Discharge Mass Spectrometry. Anal. Chem. 1986, 58, 341A-342A, 344A, 346A, 348A, 350A, 352A.

    CAS  Google Scholar 

  51. Duckworth, D.C.; Marcus, R.K. Radio Frequency Powered Glow Discharge Atomization/ Ionization Source for Solids Mass Spectrometry. Anal. Chem. 1989, 61, 1879-1886.

    CAS  Google Scholar 

  52. Marcus, R.K. Radiofrequency Powered Glow Discharges for Emission and MS: Operating Characteristics, Figures of Merit and Future Prospects. J. Anal. Atom. Spectrom. 1994, 9, 1029-1037.

    CAS  Google Scholar 

  53. Marcus, R.K. Radiofrequency Powered Glow Discharges: Opportunities and Challenges. Plenary Lecture. J. Anal. Atom. Spectrom. 1996, 11, 821-828.

    CAS  Google Scholar 

  54. Harrison, W.W.; Klingler, J.A.; Ratliff, P.H.; Mei, Y.; Barshick, C.M. Glow Discharge Techniques in Analytical Chemistry. Anal. Chem. 1990, 62, 943A- 949A.

    CAS  Google Scholar 

  55. King, F.L.; Harrison, W.W. Glow Discharge Mass Spectrometry: An Introduction to the Technique and its Utility. Mass Spectrom. Rev. 1990, 9, 285-317.

    CAS  Google Scholar 

  56. Bogaerts, A.; Gijbels, R. New Developments and Applications in GDMS. Fresenius J. Anal. Chem. 1999, 364, 367-375.

    CAS  Google Scholar 

  57. Nelis, T.; Pallosi, J. Glow Discharge as a Tool for Surface and Interface Analysis. Appl. Spectrosc. Rev. 2006, 41, 227-258.

    CAS  Google Scholar 

  58. Jakubowski, N.; Dorka, R.; Steers, E.; Tempez, A. Trends in Glow Discharge Spectroscopy. J. Anal. Atom. Spectrom. 2007, 22, 722-735.

    CAS  Google Scholar 

  59. Penning, F.M. Ionization by Metastable Atoms. Naturwissenschaften 1927, 15, 818.

    CAS  Google Scholar 

  60. Bogaerts, A. The Glow Discharge: an Exciting Plasma! J. Anal. Atom. Spectrom. 1999, 14, 1375-1384.

    CAS  Google Scholar 

  61. Xing, Y.; Xiaojia, L.; Haizhou, W. Determination of Trace Elements and Correction of Mass Spectral Interferences in Superalloy Analyzed by Glow Discharge Mass Spectrometry. Eur. J. Mass Spectrom. 2008, 14, 211-218.

    Google Scholar 

  62. Winchester, M.R.; Payling, R. Radio- Frequency Glow Discharge Spectrometry: A Critical Review. Spectrochimica Acta, Part B: Atomic Spectroscopy 2004, 59B, 607-666.

    CAS  Google Scholar 

  63. Majidi, V.; Moser, M.; Lewis, C.; Hang, W.; King, F.L. Explicit Chemical Speciation by Microsecond Pulsed Glow Discharge TOF-MS: Concurrent Acquisition of Structur-al, Molecular and Elemental Information. J. Anal. Atom. Spectrom. 2000, 15, 19-25.

    CAS  Google Scholar 

  64. Lewis, C.L.; Moser, M.A.; Dale, D.E., Jr.; Hang, W.; Hassell, C.; King, F.L.; Majidi, V. Time-Gated Pulsed Glow Discharge: Real-Time Chemical Speciation at the Elemental, Structural, and Molecular Level for Gas Chromatography Time-of-Flight Mass Spectrometry. Anal. Chem. 2003, 75, 1983-1996.

    CAS  Google Scholar 

  65. Fliegel, D.; Fuhrer, K.; Gonin, M.; Guenther, D. Evaluation of a Pulsed Glow Discharge Time-of-Flight Mass Spectrometer as a Detector for Gas Chromatography and the Influence of the Glow Discharge Source Parameters on the Information Volume in Chemical Speciation Analysis. Anal. Bioanal. Chem. 2006, 386, 169-179.

    CAS  Google Scholar 

  66. Bandura, D.R.; Baranov, V.I.; Tanner, S.D. Reaction Chemistry and Collisional Processes in Multipole Devices for Resolving Isobaric Interferences in ICPMS. Fresenius J. Anal. Chem. 2001, 370, 454-470.

    CAS  Google Scholar 

  67. Wilbur, S. A Pragmatic Approach to Managing Interferences in ICP-MS. Spectroscopy 2008, 23, 18-23.

    CAS  Google Scholar 

  68. Walsh, J.N. Inductively Coupled Plasma- Atomic Emission Spectrometry (ICP-AES), in Modern Analytical Geochemistry, Gill, R. (ed.); Addison Wesley Longman: Harlow, 1997; pp. 41-86.

    Google Scholar 

  69. Becker, J.S.; Dietze, H.J. Application of Double-Focusing Sector Field ICP Mass Spectrometry with Shielded Torch Using Different Nebulizers for Ultratrace and Precise Isotope Analysis of Long-Lived Radionuclides. J. Anal. Atom. Spectrom. 1999, 14, 1493-1500.

    CAS  Google Scholar 

  70. Myers, D.P.; Hieftje, G.M. Preliminary Design Considerations and Characteristics of an Inductively Coupled Plasma- Time-of-Flight Mass Spectrometer. Microchem. Journ. 1993, 48, 259-277.

    CAS  Google Scholar 

  71. Myers, D.P.; Li, G.; Yang, P.; Hieftje, G.M. An Inductively Coupled Plasma- Time-of-Flight Mass Spectrometer for Elemental Analysis. Part I: Optimization and Characteristics. J. Am. Soc. Mass Spectrom. 1994, 5, 1008-1016.

    CAS  Google Scholar 

  72. Myers, D.P.; Mahoney, P.P.; Li, G.; Hieftje, G.M. Isotope Ratios and Abundance Sensitivity Obtained with an Inductively Coupled Plasma-Time-of- Flight Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1995, 6, 920-927.

    CAS  Google Scholar 

  73. Hieftje, G.M.; Myers, D.P.; Li, G.; Mahoney, P.P.; Burgoyne, T.W.; Ray, S.J.; Guzowski, J.P. Toward the Next Generation of Atomic Mass Spectrometers. J. Anal. Atom. Spectrom. 1997, 12, 287-292.

    CAS  Google Scholar 

  74. Westphal, C.S.; McLean, J.A.; Acon, B.W.; Allen, L.A.; Montaser, A. Axial Inductively Coupled Plasma TOF-MS Using Direct Liquid Sample Introduction. J. Anal. Atom. Spectrom. 2002, 17, 669-675.

    CAS  Google Scholar 

  75. Tanner, M.; Guenther, D. A New ICPTOFMS. Measurement and Readout of Mass Spectra with 30 Μs Time Resolution, Applied to in-Torch LA-ICP-MS. Anal. Bioanal. Chem. 2008, 391, 1211-1220.

    CAS  Google Scholar 

  76. Milgram, K.E.; White, F.M.; Goodner, K.L.; Watson, C.H.; Koppenaal, D.W.; Barinaga, C.J.; Smith, B.H.; Winefordner, J.D.; Marshall, A.G.; Houk, R.S.; Eyler, J.R. High-Resolution Inductively Coupled Plasma Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1997, 69, 3714-3721.

    CAS  Google Scholar 

  77. Becker, J.S.; Dietze, H.J. Ultratrace and Precise Isotope Analysis by Double- Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry. J. Anal. Atom. Spectrom. 1998, 13, 1057-1063.

    CAS  Google Scholar 

  78. Mahoney, P.P.; Li, G.; Hieftje, G.M. Laser Ablation-Inductively Coupled Plasma Mass Spectrometry with a Timeof- Flight Mass Analyzer. J. Anal. Atom. Spectrom. 1996, 11, 401-405.

    CAS  Google Scholar 

  79. Pisonero, J.; Kroslakova, I.; Guenther, D.; Latkoczy, C. Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Direct Analysis of the Spatial Distribution of Trace Elements in Metallurgical- Grade Silicon. Anal. Bioanal. Chem. 2006, 386, 12-20.

    CAS  Google Scholar 

  80. Neilsen, J.L.; Abildtrup, A.; Christensen, J.; Watson, P.; Cox, A.; McLeod, C.W. Laser Ablation Inductively Coupled Plasma-Mass Spectrometry in Combination with Gel Electrophoresis: A New Strategy for Speciation of Metal Binding Serum Proteins. Spectrochim. Acta, Part B 1998, 53B, 339-345.

    CAS  Google Scholar 

  81. Chery, C.C.; Moens, L.; Cornelis, R.; Vanhaecke, F. Capabilities and Limitations of Gel Electrophoresis for Elemental Speciation: a Laboratory's Experience. Pure Appl. Chem. 2006, 78, 91-103.

    CAS  Google Scholar 

  82. Benninghoven, A. Developments in Secondary Ion Mass Spectroscopy and Applications to Surface Studies. Surf. Sci. 1975, 53, 596-625.

    CAS  Google Scholar 

  83. Pachuta, S.J.; Cooks, R.G. Mechanisms in Molecular SIMS. Chem. Rev. 1987, 87, 647-669.

    CAS  Google Scholar 

  84. Benninghoven, A.; Werner, H.W.; Rudenauer, F.G. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends; Benninghoven, A., (ed.); Wiley: New York, 1987.

    Google Scholar 

  85. Briggs, D.; Brown, A.; Vickerman, J.C. Handbook of Static Secondary Ion Mass Spectrometry; Wiley: Chichester, 1989.

    Google Scholar 

  86. Arnot, F.L.; Beckett, C. Formation of Negative Ions at Surfaces. Nature 1938, 141, 1011-1012.

    CAS  Google Scholar 

  87. Arnot, F.L.; Milligan, J.C. A New Process of Negative-Ion Formation. Proc. Royal Soc. London, Series A: Mathematical, Physical and Engineering Sci. 1936, 156, 538-560.

    CAS  Google Scholar 

  88. Herzog, R.F.K.; Viehbock, F.P. Ion Source for Mass-Spectrography. Phys. Rev. 1949, 76, 855-856.

    CAS  Google Scholar 

  89. Benninghoven, A. Mechanism of Ion Formation and Ion Emission During Sputtering. Zeitschrift fuer Physik 1969, 220, 159-180.

    CAS  Google Scholar 

  90. Benninghoven, A. Analysis of Monomolecular Surface Layers of Solids by Secondary Ion Emission. Zeitschrift fuer Physik 1970, 230, 403-417.

    CAS  Google Scholar 

  91. Adams, F. Analytical Atomic Spectrometry and Imaging: Looking Backward from 2020 to 1975. Spectrochimica Acta, Part B: Atomic Spectroscopy 2008, 63B, 738-745.

    CAS  Google Scholar 

  92. Benninghoven, A.; Sichtermann, W.K. Detection, Identification and Structural Investigation of Biologically Important Compounds by Secondary Ion Mass Spectrometry. Anal. Chem. 1978, 50, 1180-1184.

    CAS  Google Scholar 

  93. Coath, C.D.; Long, J.V.P. A High- Brightness Duoplasmatron Ion Source for Microprobe Secondary-Ion Mass Spectrometry. Rev. Scientific Instr. 1995, 66, 1018-1023.

    CAS  Google Scholar 

  94. Konarski, P.; Kalczuk, M.; Koscinski, J. Bakeable Duoplasmatron Ion Gun for SIMS Microanalysis. Rev. Scientific Instr. 1992, 63, 2397-2399.

    CAS  Google Scholar 

  95. Pacholski, M.L.; Winograd, N. Imaging with Mass Spectrometry. Chem. Rev. 1999, 99, 2977-3005.

    CAS  Google Scholar 

  96. Shimizu, N. Principles of SIMS and Modern Ion Microprobes, in Modern Analytical Geochemistry, Gill, R. (ed.); Addison Wesley Longman: Harlow, 1997; Chap. 15, pp. 235-242.

    Google Scholar 

  97. Weibel, D.; Wong, S.; Lockyer, N.; Blenkinsopp, P.; Hill, R.; Vickerman, J.C. A C60 Primary Ion Beam System for Time of Flight Secondary Ion Mass Spectrometry: Its Development and Secondary Ion Yield Characteristics. Anal. Chem. 2003, 75, 1754-1764.

    CAS  Google Scholar 

  98. Chait, B.T.; Standing, K.G. A Time-of- Flight Mass Spectrometer for Measurement of Secondary Ion Mass Spectra. Int. J. Mass Spectrom. Ion Phys. 1981, 40, 185-193.

    CAS  Google Scholar 

  99. Standing, K.G.; Chait, B.T.; Ens, W.; McIntosh, G.; Beavis, R. Time-of-Flight Measurements of Secondary Organic Ions Produced by 1 keV to 16 keV Primary Ions. Nucl. Instr. & Meth. Phys. Res. 1982, 198, 33-38.

    CAS  Google Scholar 

  100. Jabs, H.U.; Assmann, G.; Greifendorf, D.; Benninghoven, A. High Performance Liquid Chromatography and Time-of- Flight Secondary Ion Mass Spectrometry: A New Dimension in Structural Analysis of Apolipoproteins. J. Lipid Res. 1986, 27, 613-621.

    CAS  Google Scholar 

  101. Ens, W.; Standing, K.G.; Chait, B.T.; Field, F.H. Comparison of Mass Spectra Obtained with Low-Energy Ion and High-Energy 252Californium Fission Fragment Bombardment. Anal. Chem. 1981, 53, 1241-1244.

    CAS  Google Scholar 

  102. Lafortune, F.; Beavis, R.; Tang, X.; Standing, K.G.; Chait, B.T. Narrowing the Gap Between keV and Fission Fragment Secondary Ion Yields with Nitrocellulose. Rapid Commun. Mass Spectrom. 1987, 1, 114-116.

    CAS  Google Scholar 

  103. Ens, W.; Main, D.E.; Standing, K.G.; Chait, B.T. Comparison of Relative Quasi- Molecular Ion Yields for 8-KeV Ion and 252Cf Fission Fragment Bombardment. Anal. Chem. 1988, 60, 1494-1498.

    CAS  Google Scholar 

  104. Olthoff, J.K.; Honovich, J.P.; Cotter, R.J. Liquid Secondary Ion TTOF-MS. Anal. Chem. 1987, 59, 999-1002.

    CAS  Google Scholar 

  105. Linton, R.W.; Mawn, M.P.; Belu, A.M.; DeSimone, J.M.; Hunt, M.O., Jr.; Menceloglu, Y.Z.; Cramer, H.G.; Benninghoven, A. Time-of-Flight Secondary Ion Mass Spectrometric Analysis of Polymer Surfaces and Additives. Surf. Interface Anal. 1993, 106. G20a,l u9s9k1a-,9 9A9.A. . ToF-SIMS Determination of Molecular Weights from Polymeric Surfaces and Microscopic Phases. Surf. Interface Anal. 1997, 25, 790-798.

    Google Scholar 

  106. 106. Galuska-A.A. . ToF-SIMS Determination of Molecular Weights from Polymeric Surfaces and Microscopic Phases. Surf. Interface Anal. 1997, 25, 790-798.

    Google Scholar 

  107. Bullett, N.A.; Short, R.D.; O'Leary, T.; Beck, A.J.; Douglas, C.W.I.; Cambray-Deakin, M.; Fletcher, I.W.; Roberts, A.; Blomfield, C. Direct Imaging of Plasma- Polymerized Chemical Micropatterns. Surf. Interface Anal. 2001, 31, 1074-1076.

    CAS  Google Scholar 

  108. Liu, S.; Weng, L.T.; Chan, C.M.; Li, L.; Ho, N.K.; Jiang, M. Quantitative Surface Characterization of Poly(Styrene)/Poly- (4-Vinyl Phenol) Random and Block Copolymers by ToF-SIMS and XPS. Surf. Interface Anal. 2001, 31, 745-753.

    CAS  Google Scholar 

  109. Médard, N.; Poleunis, C.; Vanden Eynde, X.; Bertrand, P. Characterization of Additives at Polymer Surfaces by TOF-SIMS. Surf. Interface Anal. 2002, 34, 565-569.

    Google Scholar 

  110. Davies, N.; Weibel, D.E.; Blenkinsopp, P.; Lockyer, N.; Hill, R.; Vickerman, J.C. Development and Experimental Application of a Gold Liquid Metal Ion Source. Appl. Surface Sci. 2003, 203-204, 223-227.

    CAS  Google Scholar 

  111. Nagy, G.; Walker, A.V. Enhanced Secondary Ion Emission with a Bismuth Cluster Ion Source. Int. J. Mass Spectrom. 2007, 262, 144-153.

    CAS  Google Scholar 

  112. Touboul, D.; Kollmer, F.; Niehuis, E.; Brunelle, A.; Laprevote, O. Improvement of Biological Time-of-Flight-SIMS Imaging with a Bismuth Cluster Ion Source. J. Am. Soc. Mass Spectrom. 2005, 16, 1608-1618.

    CAS  Google Scholar 

  113. Malmberg, P.; Nygren, H. Methods for the Analysis of the Composition of Bone Tissue, with a Focus on Imaging Mass Spectrometry (TOF-SIMS). Proteomics 2008, 8, 3755-3762.

    CAS  Google Scholar 

  114. Wong, S.C.C.; Hill, R.; Blenkinsopp, P.; Lockyer, N.P.; Weibel, D.E.; Vickerman, J.C. Development of a C60 + Ion Gun for Static SIMS and Chemical Imaging. Appl. Surface Sci. 2003, 203-204, 219-222.

    CAS  Google Scholar 

  115. Fletcher, J.S.; Lockyer, N.P.; Vickerman, J.C. C60, Buckminsterfullerene: Its Impact on Biological ToF-SIMS Analysis. Surf. Interface Anal. 2006, 38, 1393-1400.

    CAS  Google Scholar 

  116. Mas, S.; Perez, R.; Martinez-Pinna, R.; Egido, J.; Vivanco, F. Cluster TOFSIMS Imaging: A New Light for in Situ Metabolomics? Proteomics 2008, 8, 3735-3745.

    CAS  Google Scholar 

  117. Briggs, D.; Hearn, M.J. Analysis of Polymer Surfaces by SIMS. Part 5. The Effects of Primary Ion Mass and Energy on Secondary Ion Relative Intensities. Int. J. Mass Spectrom. Ion Proc. 1985, 67, 47-56.

    CAS  Google Scholar 

  118. Brunelle, A.; Laprevote, O. Lipid Imaging with Cluster Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Bioanal. Chem. 2009, 393, 31-35.

    CAS  Google Scholar 

  119. Herrmann, A.M.; Ritz, K.; Nunan, N.; Clode, P.L.; Pett-Ridge, J.; Kilburn, M.R.; Murphy, D.V.; O'Donnell, A.G.; Stockdale, E.A. Nano-Scale Secondary Ion Mass Spectrometry – A New Analytical Tool in Biogeochemistry and Soil Ecology: A Review Article. Soil Biol. & Biochem. 2007, 39, 1835-1850.

    CAS  Google Scholar 

  120. Fletcher, J.S.; Rabbani, S.; Henderson, A.; Blenkinsopp, P.; Thompson, S.P.; Lockyer, N.P.; Vickerman, J.C. A New Dynamic in Mass Spectral Imaging of Single Biological Cells. Anal. Chem. 2008, 80, 9058-9064.

    CAS  Google Scholar 

  121. Carado, A.; Passarelli, M.K.; Kozole, J.; Wingate, J.E.; Winograd, N.; Loboda, A.V. C60 SIMS with a Hybrid- Quadrupole Orthogonal TOF Mass Spectrometer. Anal. Chem. 2008, 80, 7921-7929.

    CAS  Google Scholar 

  122. Nelson, D.E.; Korteling, R.G.; Stott, W.R. Carbon-14: Direct Detection at Natural Concentrations. Science 1977, 198, 507-508.

    CAS  Google Scholar 

  123. Bennett, C.L.; Beukens, R.P.; Clover, M.R.; Grove, H.E.; Liebert, R.B.; Litherland, A.E.; Purser, K.H.; Sondheim, W.E. Radiocarbon Dating Using Electrostatic Accelerators: Negative Ions Provide the Key. Science 1977, 198, 508-510.

    CAS  Google Scholar 

  124. Lappin, G.; Garner, R.C. Current Perspectives of 14C-Isotope Measurement in Biomedical Accelerator Mass Spectrometry. Anal. Bioanal. Chem. 2004, 378, 356-364.

    CAS  Google Scholar 

  125. Hellborg, R.; Skog, G. Accelerator Mass Spectrometry. Mass Spectrom. Rev. 2008, 27, 398-427.

    CAS  Google Scholar 

  126. Brown, K.; Dingley, K.H.; Turteltaub, K.W. Accelerator Mass Spectrometry for Biomedical Research. Methods in Enzymology 2005, 402, 423-443.

    CAS  Google Scholar 

  127. Ikeda, T. Instruments for Radiation Measurement in Life Sciences. VI. Use of AMS in Studies on Drug Metabolism and Pharmacokinetics. Radioisotopes 2005, 54, 15-21.

    CAS  Google Scholar 

  128. Brown, K.; Tompkins, E.M.; White, I.N.H. Applications of Accelerator Mass Spectrometry for Pharmacological and Toxicological Research. Mass Spectrom. Rev. 2006, 25, 127-145.

    CAS  Google Scholar 

  129. Suter, M. 25 Years of AMS - a Review of Recent Developments. Nucl. Instrum. Methods Phys. Res., Sect. B 2004, 223-224, 139-148.

    CAS  Google Scholar 

  130. Stocker, M.; Doebeli, M.; Grajcar, M.; Suter, M.; Synal, H.A.; Wacker, L. A Universal and Competitive Compact AMS Facility. Nucl. Instrum. Methods Phys. Res., Sect. B 2005, 240, 483-489.

    CAS  Google Scholar 

  131. Wacker, L.; Fifield, L.K.; Olivier, S.; Suter, M.; Synal, H.A. Compact AMS: A Powerful Tool to Measure Actinides in the Environment. Special Publ. Royal Society of Chemistry 2006, 305, 44-46.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen H. Gross .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2011). Inorganic Mass Spectrometry. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10711-5_15

Download citation

Publish with us

Policies and ethics