Skip to main content

SLAM Estimation in Dynamic Outdoor Environments: A Review

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5928))

Included in the following conference series:

Abstract

This paper gives a review of the literature on Simultaneous Localization and Mapping (SLAM). SLAM has been intensively researched in recent years in the field of robotics and intelligent vehicles, many approaches have been proposed including occupancy grid mapping method (Bayesian, Dempster-Shafer and Fuzzy Logic), Localization estimation method (edge or point features based direct scan matching techniques, probabilistic likelihood, particle filter). In this paper, we classify SLAM approaches into three main categories: visual SLAM, Lidar SLAM and sensor fusion SLAM, while visual and lidar can also contain many types and levels, such as monocular camera, stereovision, laser scanner, radar and fusion of these sensors. A number of promising approaches and recent developments in this literature have been reviewed in this paper. To give a better understanding of performance difference, an implementation of Lidar SLAM is presented with comparative analysis result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayache, N., Faugeras, O.D.: Building, registrating, and fusing noisy visual maps. International Journal of Robotics Research 7(6), 45–65 (1988)

    Article  Google Scholar 

  2. Besl, P., Mckay, N.D.: A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  3. Biber, P., Straser, W.: The normal distributions transform: A new approach to laser scan matching. In: IROS 2003, vol. 3, pp. 2743–2748 (2003)

    Google Scholar 

  4. Bosse, M., Rikoski, R., Leonard, J., Teller, S.: Vanishing points and 3d lines from omnidirectional video. In: ICIP 2002, vol. 3, pp. 513–516 (2002)

    Google Scholar 

  5. Bosse, M., Newman, P., Leonard, J., Teller, S.: Simultaneous localization and map building in large-scale cyclic environments using the Atlas framework. The International Journal of Robotics Research 23(12), 1113–1139 (2004)

    Article  Google Scholar 

  6. Chen, Y., Medioni, G.: Object Modeling by Registration of Multiple RangeImage. In: Proc. IEEE Int. Conf. on Robotics and Automation (1991)

    Google Scholar 

  7. Cox, I.J.: Blanche.an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–203 (1991)

    Article  Google Scholar 

  8. Dailey, M.N., Parnichkun, M.: Landmark-based simultaneous localization and mapping with stereo vision. In: Proc. Asian Conference on Industrial Automation and Robotics, Bangkok, Thailand (2005)

    Google Scholar 

  9. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proc. IEEE International Conference on Computer Vision, pp. 1403–1410 (2003)

    Google Scholar 

  10. Deans, M.: Bearing-Only Localization and Mapping. PhD thesis, tech. report CMU-RI-TR-05-41, Robotics Institute, Carnegie Mellon University (2005)

    Google Scholar 

  11. Diosi, A., Kleeman, L.: Laser scan matching in polar coordinates with application to SLAM. Intelligent Robots and Systems, 3317–3322 (2005)

    Google Scholar 

  12. Duckett, T., Saffiotti, A.: Building globally consistent gridmaps from topologies. In: Proc. of the 6th Int. IFAC Symp. on Robot Control, SyROCO, Austria (2000)

    Google Scholar 

  13. Eade, E., Drummond, T.: Scalable monocular SLAM. In: Proc. Conference on Computer Vision and Pattern Recognition, New York, USA, pp. 469–468 (2006)

    Google Scholar 

  14. Elfes, A.: Multi-source spatial data fusion using Bayesian reasoning. In: Abidi, M.A., Gonzalez, R.A. (eds.) Data fusion in robotics and machine intelligence, ch. 3. Academic Press, New York (1992)

    Google Scholar 

  15. Elinas, P., Sim, R.: Little. J.J.: SLAM: Stereo Vision SLAM Using the Rao-Blackwellised Particle Filter and a Novel Mixture Proposal Distribution. In: Proc. of ICRA 2006, pp. 1564–1570 (2006)

    Google Scholar 

  16. Fox, D., Burgard, W., Thrun, S.: Probabilistic methods for mobile robot mapping. In: Proc. of the IJCAI 1999 Workshop on Adaptive Spatial Representations of Dynamic Environments (1999)

    Google Scholar 

  17. Gambino, F., Oriolo, G., Ulivi, G.: Comparison of three uncertainty calculus techniques for ultrasonic map building. In: Proc. SPIE Int. Symp. on Aerospace/Defense Sensing and Control, vol. 2761, pp. 249–260 (1996)

    Google Scholar 

  18. Garcia, M.A., Solanas, A.: 3D Simultaneous Localization and Modeling from Stereo Vision. In: Proc. of ICRA 2004, pp. 847–853 (2004)

    Google Scholar 

  19. Groecke, R., Asthana, A., Pettersson, N., Petersson, L.: Visual vehicle egomotion estimation using the fourier-mellin transform. In: IEEE Intelligent Vehicles Symposium, Istanbul, pp. 450–455 (2007)

    Google Scholar 

  20. Guivant, J., Nebot, E., Baiker, S.: High accuracy navigation using laser range sensors in outdoor applications. In: IEEE Int. conf. on Robotics and automation, vol. 4, pp. 3817–3822 (2000)

    Google Scholar 

  21. Gutmann, J.S.: Robuste Navigation autonomer mobiler Systeme. PhD thesis, Universityy of Freiburg (2000)

    Google Scholar 

  22. Hahnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: IROS 2003, vol. 1, pp. 206–211 (2003)

    Google Scholar 

  23. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  24. Herath, D.C., Kodagoda, K.R.S., Dissanayake, G.: Stereo Vision Based SLAM: Issues and Solutions, Vision Systems. In: Obinata, G., Dutta, A. (eds.) Advanced Robotic Systems, pp. 565–582 (2007)

    Google Scholar 

  25. Iocchi, L., Konolige, K., Bajracharya, M.: Visually Realistic Mapping of a Planar Environment with Stereo. In: Proc. of ISER 2000 (2000)

    Google Scholar 

  26. Jeong, W.Y., Lee, K.M.: Visual SLAM with Line and Corner Features. In: Proc. of Intelligent Robots and Systems, pp. 2570–2575 (2006)

    Google Scholar 

  27. Lhuillier, M.: Automatic structure and motion using a catadioptric camera. In: IEEE Workshop on Omnidirectional Vision (2005)

    Google Scholar 

  28. Lingemann, K., Surmann, H., Nuchter, A., Hertzberg, J.: Indor and outdoor localization for fast mobile robots. In: IROS 2004, vol. 3, pp. 2185–2190 (2004)

    Google Scholar 

  29. Lu, F., Milios, E.E.: Robot pose estimation in unknown environments by matching 2D range scans. Computer Vision and Pattern Recognition, 935–938 (1994)

    Google Scholar 

  30. Lu, F.: Shape Registration Using Optimization for Mobile Robot Navigation. PhD thesis, University of Toronto (1995)

    Google Scholar 

  31. Milford, M.J., Wyeth, G.F.: Single camera vision-only slam on a suburban road network. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 3684–3689 (2008)

    Google Scholar 

  32. Milford, M.J., Prasser, D., Wyeth, G.: Ratslam: A hippocampal model for simultaneous localization and mapping. In: IEEE International Conference on Robotics and Automation, USA, pp. 403–408 (2004)

    Google Scholar 

  33. Moravec, H.P., Elfes, A.: High Resolution Maps from Wide Angle Sonar. In: Proceedings of the IEEE International Conference on Robotics and Automation, March 1985, pp. 116–121 (1985)

    Google Scholar 

  34. Moravec, H.: DARPA MARS program research progress. Carnegie Mellon University (2001), http://www.frc.ri.cmu.edu/hpm/talks/Report.0107.html

  35. Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Autonomous Robots 8(2), 161–171 (2000)

    Article  Google Scholar 

  36. Oriolo, G., Ulivi, G., Vendittelli, M.: Real-time map building and navigation for autonomous robots in unknow environments. IEEE Transactions on Systems, Man, and Cybernetics 5 (1999)

    Google Scholar 

  37. Pupilli, M., Calway, A.: Real-time camera tracking using a particle filter. In: Proc. British Machine Vision Conference, Oxford, UK, pp. 519–528 (2005)

    Google Scholar 

  38. Ribo, M., Pinz, A.: A comparison of three uncertainty calculi for building sonar-based occupancy grids. International Journal of Robotics and Autonomous Systems 35, 201–209 (2001)

    Article  MATH  Google Scholar 

  39. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Proc. IEEE International Conference on Computer Vision, Beijing, China, pp. 1508–1515 (2005)

    Google Scholar 

  40. Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-Time Monocular Visual Odometry for On-Road Vehicles with 1-Point RANSAC. In: Proceedings of the IEEE International Conference on Robotics and Automation, Japan, pp. 4293–4299 (2009)

    Google Scholar 

  41. Se, S., Lowe, D., Little, J.: Local and Global Localization for Mobile Robots using Visual Landmarks. In: Proc. of IROS 2001 (2001)

    Google Scholar 

  42. Tardif, J., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidirectional camera. In: IEEE IROS, pp. 2531–2538 (2008)

    Google Scholar 

  43. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: ICRA 2000, vol. 1, pp. 321–328 (2000)

    Google Scholar 

  44. Thrun, S.: Learning occupancy grids with forward sensor models. Autonomous robots 15, 111–127 (2003)

    Article  Google Scholar 

  45. Tomono, M.: Robust 3D SLAM with a stereo Camera Based on an Edge-Point ICP Algorithm. In: IEEE International Conference on robotics and Automation, Japan, May 2009, pp. 4306–4311 (2009)

    Google Scholar 

  46. Tomono, M.: A scan matching method using euclidean invariant signature for global localization and map building. In: ICRA 2004, pp. 866–871 (2004)

    Google Scholar 

  47. Vu, T.D., Burlet, J., Aycard, O.: Mapping of environment, Detection and Tracking of Moving Objects using Occupancy Grids. In: Intelligent Vehicles Symposium, pp. 684–689. IEEE, Los Alamitos (2008)

    Chapter  Google Scholar 

  48. Zhao, H., Shibasaki, R.: Reconstructing Urban 3D Model using Vehicle-borne Laser Range Scanners. In: Proc. of the Third Int. Conf. on 3-D Digital Imaging and Modeling, May 2001, pp. 349–356 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, Z., Hu, Z., Uchimura, K. (2009). SLAM Estimation in Dynamic Outdoor Environments: A Review. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds) Intelligent Robotics and Applications. ICIRA 2009. Lecture Notes in Computer Science(), vol 5928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10817-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10817-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10816-7

  • Online ISBN: 978-3-642-10817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics