Skip to main content

An Efficient Self-stabilizing Distance-2 Coloring Algorithm

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5869))

Abstract

We present a self-stabilizing algorithm for the distance-2 coloring problem that uses a constant number of variables on each node and that stabilizes in O2 m) moves using at most Δ2 + 1 colors, where Δ is the maximum degree in the graph and m is the number of edges in the graph. The analysis holds true both for the sequential and the distributed adversarial daemon model. This should be compared with the previous best self-stabilizing algorithm for this problem which stabilizes in O(nm) moves under the sequential adversarial daemon and in O(n 3 m) time steps for the distributed adversarial daemon and which uses O(δ i ) variables on each node i, where δ i is the degree of node i.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Ann. Op. Res. 153, 79–129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chaudhuri, P., Thompson, H.: A self-stabilizing distributed algorithm for edge-coloring general graphs. Aust. J. Comb. 38, 237–248 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.: Distance-two information in self-stabilizing algorithms. Par. Proc. L. 14, 387–398 (2004)

    Article  MathSciNet  Google Scholar 

  4. Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Dist. Comp. 7, 55–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing algorithms for orderings and colorings. Int. J. Found. Comp. Sci. 16, 19–36 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under unfair scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloring of arbitrary graphs. In: OPODIS 2000, pp. 55–70 (2000)

    Google Scholar 

  8. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing coloring. Inf. Proc. Lett. 87, 251–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, S.-T., Hung, S.-S., Tzeng, C.-H.: Self-stabilizing coloration in anonymous planar networks. Inf. Proc. Lett. 95, 307–312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kosowski, A., Kuszner, L.: Self-stabilizing algorithms for graph coloring with improved performance guarantees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1150–1159. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Shukla, S., Rosenkrantz, D., Ravi, S.: Developing self-stabilizing coloring algorithms via systematic randomization. In: Proc. Int. Workshop on Par. Process., pp. 668–673 (1994)

    Google Scholar 

  12. Shukla, S.K., Rosenkrantz, D., Ravi, S.S.: Observations on self-stabilizing graph algorithms for anonymous networks. In: Proc. of the Second Workshop on Self-stabilizing Systems, pp. 7.1–7.15 (1995)

    Google Scholar 

  13. Sun, H., Effantin, B., Kheddouci, H.: A self-stabilizing algorithm for the minimum color sum of a graph. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 209–214. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Sur, S., Srimani, P.K.: A self-stabilizing algorithm for coloring bipartite graphs. Inf. Sci. 69, 219–227 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tzeng, C.-H., Jiang, J.-R., Huang, S.-T.: A self-stabilizing (δ + 4)-edge-coloring algorithm for planar graphs in anonymous uniform systems. Inf. Proc. Lett. 101, 168–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blair, J., Manne, F. (2010). An Efficient Self-stabilizing Distance-2 Coloring Algorithm. In: Kutten, S., Žerovnik, J. (eds) Structural Information and Communication Complexity. SIROCCO 2009. Lecture Notes in Computer Science, vol 5869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11476-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11476-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11475-5

  • Online ISBN: 978-3-642-11476-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics