Skip to main content

SQC N=1 SUGRA (Fermionic Differential Operator Representation)

  • Chapter
  • First Online:
Quantum Cosmology - The Supersymmetric Perspective - Vol. 1

Part of the book series: Lecture Notes in Physics ((LNP,volume 803))

  • 1304 Accesses

Abstract

This is a very important chapter. It may seem rather long and perhaps over-detailed, but the reader should have no doubt that it is all quite necessary. All journeys of exploration, including those involved with research, have to start somewhere, and many steps may be needed before an interesting vantage point is reached. SQC is such a case and this chapter is part of the route toward that goal. A significant amount of the results and research in SQC have been produced within the methodology we will describe here (see [1], but also [2–6]). It follows directly from the reduction of 4D canonical quantum N = 1 SUGRA (indirectly related to a higher dimensional superstring theory) to a cosmological minisuperspace with time-dependent (1D) variables and momenta represented by differential operators of the canonically conjugate variables [7, 8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Consult Sects. 4.1 and 4.2 of Vol. II for the canonical quantization of the full theory. There we identify the characteristics of physical states [12, 4, 13] (Sect. 4.1), discussing the route to a semiclassical perspective [14] and how one might investigate (cosmologically) testable directions (Sect. 4.2).

  2. 2.

    It is also important to stress that auxiliary fields are also required to balance the number of fermionic and bosonic degrees of freedom. However, these auxiliary fields can be neglected in the end (see [15, 2, 21, 16, 17] for more details).

  3. 3.

    This means that we truncate the general decomposition (see Sect. 5.2) \(\psi^A{}_{BB^{\prime}} = e_{B\,B^{\prime}}{}^{i}\psi^A{}_{i}\) in (5.191) at the spin-1/2 mode level, i.e., with \(\beta^A = 3 n^{AA^{\prime}} \overline\psi{}_{A^{\prime}}/4 \sim\overline\psi{^A}\).

  4. 4.

    The reader should note that \({\mathsf{P}}\) will henceforth play the role of \(\mathsf{W}\) as indicated in Chap. 3 of Vol. II. The corresponding literature in SQC has mainly used \({\mathsf{P}}\) instead (see also [36]).

  5. 5.

    Please notice that we are not introducing a Fourier-like expansion in the variables \(a,\phi,\overline{\phi}\). This would lead to a midisuperspace scenario [39, 40], a setting situated somewhere between a SQC minisuperspace and the full theory of supergravity. Instead, we restrict ourselves to a strongly truncated supersymmetric minisuperspace and employ the expansion as a simplifying assumption in our equations.

  6. 6.

    However, in the case of larger gauge group, some of the gauge symmetries will survive. These will give rise, in the one-dimensional model, to local internal symmetries with a reduced gauge group. Therefore, a gauge constraint can be expected to play an important role in that case. It would be particularly interesting to study such a model (see Chap. 8).

  7. 7.

    The introduction of fermions in ordinary quantum cosmological models with gauge fields led to additional non-trivial ansätze for the fermionic fields [63]. These involve restrictions from group theory, rather than just imposing time dependence.

  8. 8.

    In the present case, the first term is absent due to our choice of gauge group.

  9. 9.

    Notice that the above expressions correspond to a gauge group SU(2) and hence a compact Kähler manifold, which implies that the analytical potential \({\mathsf{P}(\phi^{I})}\) is zero.

  10. 10.

    Other approaches and frameworks will be described in the next chapter and in Vol. II.

  11. 11.

    See Sect. 4.1.3 concerning the Teitelboim procedure.

  12. 12.

    Moreover, it should be noticed that \(^{(3\textrm{s})}D_j\), the spatial covariant derivative on the gravitino, is explicitly present in the supersymmetry constraints (see Appendix A).

  13. 13.

    In the representation \(\overline \Psi(e^{AA^{\prime}}{}_{i}, \overline \psi{}^{A^{\prime}}{}_{i})\), these have of the form \(\overline \psi{}^6\), \(\overline \psi{}^4\), \(\overline \psi{}^2\), and \( \overline \psi{}^0\), the superscript denoting the fermionic order.

  14. 14.

    Meaning that only time dependence is required for the effective degrees of freedom (see the discussion in Sect. 5.1.5). It should be noted that this simple ansatz is not invariant under homogeneous supersymmetry transformations. To obtain an ansatz that is invariant under supersymmetry, one must use a non-diagonal triad \(e^a{}_{i} = b^a{}_{b} E^b{}_{i}\), where b ab is symmetric (\(a, b = 1, 2, 3\) here), combined with supersymmetry, homogeneous spatial coordinate, and local Lorentz transformations.

  15. 15.

    A term \((\beta^A \gamma_{ABC})^2 = \beta^A \gamma_{ABC}\beta^D \gamma_D{}^{BC}\) can be rewritten, using the anticommutation of the β and γ terms, as \(\beta^E\,\beta_E \varepsilon^{AD} \gamma_{ABC} \gamma_D{}^{BC} \sim (\beta_E \beta^E)(\gamma_{ABC} \gamma^{ABC})\). Similarly, any quartic in γ ABC can be rewritten as a multiple of \((\gamma_{ABC} \gamma^{ABC})^2\). Since there are only four independent components of \(\gamma_{ABC} = \gamma_{(ABC)}\), only one independent quartic can be made from γ ABC , and it is sufficient to check that \((\gamma_{ABC} \gamma^{ABC})^2\) is non-zero. Now \(\gamma_{ABC} \gamma^{ABC} = 2\gamma_{000} \gamma_{111} - 6 \gamma_{100} \gamma_{011}\). Hence \((\gamma_{ABC} \gamma^{ABC})^2\) includes a non-zero quartic term \(\gamma_{000} \gamma_{100} \gamma_{110} \gamma_{111}\) [2].

  16. 16.

    Only the class A models allow the spatial sections to be compactified by factoring if necessary by a discrete subgroup of isometries [74, 76].

  17. 17.

    Regarding the \(k = +1\) FRW model, a bosonic state was found, namely the Hartle–Hawking solution for an anti-de Sitter case (see Sect. 5.1.2).

  18. 18.

    For the case of an FRW model without supermatter, and due to the restriction of the gravitino field to its spin-1/2 mode component, the former ansatz for the wave function remains valid.

References

  1. P.D. D'Eath: The canonical quantization of supergravity. Phys. Rev. D 29, 2199 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  2. P.D. D'Eath: Supersymmetric Quantum Cosmology. Cambridge University Press, Cambridge, (1996) p. 252

    Book  MATH  Google Scholar 

  3. A. Macias: The ideas behind the different approaches to quantum cosmology. Gen. Rel. Grav. 31, 653–671 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. P.V. Moniz: Supersymmetric quantum cosmology. Shaken not stirred. Int. J. Mod. Phys. A 11, 4321–4382 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. P.V. Moniz: A tale of two symmetries, or the quantum universe from supersymmetry and duality. Nucl. Phys. Proc. Suppl. 88, 57–66 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. P.V. Moniz: A supersymmetric vista for quantum cosmology. Gen. Rel. Grav. 38, 577–592 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R. Casalbuoni: On the quantization of systems with anticommuting variables. Nuovo Cim. A 33, 115 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Casalbuoni: The classical mechanics for Bose–Fermi systems. Nuovo Cim. A 33, 389 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  9. K.V. Kuchar and M.P. Ryan: Is minisuperspace quantization valid? Taub in mixmaster. Phys. Rev. D 40, 3982–3996 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  10. K.V. Kuchar and M.P. Ryan Jr.: Can minisuperspace quantization be justified? NSF-ITP-86–78 (1986)

    Google Scholar 

  11. S. Sinha and B.L. Hu: Validity of the minisuperspace approximation. An example from interacting quantum field theory. Phys. Rev. D 44, 1028–1037 (1991)

    Article  ADS  Google Scholar 

  12. S.M. Carroll, D.Z. Freedman, M.E. Ortiz, and D.N. Page: Physical states in canonically quantized supergravity. Nucl. Phys. B 423, 661–687 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D.N. Page: Inconsistency of canonically quantized N = 1 supergravity? hep-th/9306032 (1993)

    Google Scholar 

  14. C. Kiefer, T. Luck, and P. Moniz: The semiclassical approximation to supersymmetric quantum gravity. Phys. Rev. D 72, 045006 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. L.J. Alty, P.D. D'Eath, and H.F. Dowker: Quantum wormhole states and local supersymmetry. Phys. Rev. D 46, 4402–4412 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  16. P.D. D'Eath and D.I. Hughes: Supersymmetric minisuperspace. Phys. Lett. B 214, 498–502 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  17. P.D. D'Eath and D.I. Hughes: Minisuperspace with local supersymmetry. Nucl. Phys. B 378, 381–409 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  18. J.B. Hartle and S.W. Hawking: Wave function of the universe. Phys. Rev. D 28, 2960–2975 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  19. S.W. Hawking and D.N. Page: The spectrum of wormholes. Phys. Rev. D 42, 2655–2663 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. A.D.Y. Cheng, P.D. D'Eath, and P.R.L.V. Moniz: Quantization of a locally supersymmetric Friedmann model with supermatter. Int. J. Mod. Phys. D 4, 189–206 (1995)

    Article  ADS  Google Scholar 

  21. P.D. D'Eath, H.F. Dowker, and D.I. Hughes: Supersymmetric quantum wormhole states. Presented at 5th Seminar on Quantum Gravity, Moscow, USSR, 28 May–1 June 1990

    Google Scholar 

  22. P.V. Moniz: Is there a problem with quantum wormhole states in N = 1 supergravity? Gen. Rel. Grav. 28, 97–115 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. P.V. Moniz: Conserved currents in supersymmetric quantum cosmology? Int. J. Mod. Phys. D 6, 625–641 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Moniz: FRW minisuperspace with local N = 4 supersymmetry and self-interacting scalar field. Ann. Phys. 12, 174–198 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. A.D.Y. Cheng, P.D. D'Eath, and P.R.L.V. Moniz: Quantization of a Friedmann–Robertson–Walker model in N = 1 supergravity with gauged supermatter. Class. Quant. Grav. 12, 1343–1354 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  26. P.V. Moniz: FRW model with vector fields in N = 1 supergravity. Helv. Phys. Acta 69, 293–296 (1996)

    MathSciNet  MATH  Google Scholar 

  27. P.V. Moniz: Wave function of a supersymmetric FRW model with vector fields. Int. J. Mod. Phys. D 6, 465–478 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. M. Henneaux and C. Teitelboim: Quantization of Gauge Systems. Princeton University Press, Princeton, NJ (1992)

    MATH  Google Scholar 

  29. J.E. Nelson and C. Teitelboim: Hamiltonian for the Einstein–Dirac field. Phys. Lett. B 69, 81–84 (1977)

    Article  ADS  Google Scholar 

  30. M. Pilati: The canonical formulation of supergravity. Nucl. Phys. B 132, 138 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  31. C. Teitelboim: Supergravity and square roots of constraints. Phys. Rev. Lett. 38, 1106–1110 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  32. P.K. Townsend: Cosmological constant in supergravity. Phys. Rev. D 15, 2802–2804 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  33. A.D.Y. Cheng, P.D. D'Eath, and P.R.L.V. Moniz: Quantization of the Bianchi type IX model in supergravity with a cosmological constant. Phys. Rev. D 49, 5246–5251 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  34. J.J. Halliwell: Introductory lectures on quantum cosmology. To appear in Proc. of Jerusalem Winter School on Quantum Cosmology and Baby Universes, Jerusalem, Israel, 27 December 1989–4 January 1990

    Google Scholar 

  35. D.N. Page: Lectures on quantum cosmology. In Proceedings of Banff Summer Institute on Gravitation, Banff, Canada, 12–15 August 1990, Mann, R.B. et al. (Eds.), World Scientific, Singapore (1991)

    Google Scholar 

  36. J. Wess and J. Bagger: Supersymmetry and Supergravity. Princeton University Press, Princeton, NJ (1992)

    Google Scholar 

  37. A.D.Y. Cheng, P.D. D'Eath, and P.R.L.V. Moniz: Quantization of Bianchi models in N = 1 supergravity with a cosmological constant. Grav. Cosmol. 1, 12–21 (1995)

    ADS  MATH  Google Scholar 

  38. O. Bertolami and P.V. Moniz: Can spontaneous supersymmetry breaking in a quantum universe induce the emergence of classical spacetimes? gr-qc/9710030 (1997)

    Google Scholar 

  39. P.V. Moniz: Can the imprint of an early supersymmetric quantum cosmological epoch be present in our cosmological observations? Given at COSMO 97, 1st International Workshop on Particle Physics and the Early Universe, Ambleside, England, 15–19 September 1997

    Google Scholar 

  40. P.V. Moniz: Origin of structure in a supersymmetric quantum universe. Phys. Rev. D 57, 7071–7074 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  41. P.V. Moniz: Can we obtain conserved currents in supersymmetric quantum cosmology? gr-qc/9710090 (1997)

    Google Scholar 

  42. A.D.Y. Cheng, P.D. D'Eath, and P.R.L.V. Moniz: Quantization of a Friedmann–Robertson–Walker model in N = 1 supergravity with gauged supermatter, gr-qc/9503009 (1995)

    Google Scholar 

  43. O. Bertolami and J.M. Mourao: The ground state wave function of a radiation dominated universe. Class. Quant. Grav. 8, 1271–1282 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  44. M.C. Bento, O. Bertolami, P.V. Moniz, J.M. Mourao, and P.M. Sa: On the cosmology of massive vector fields with SO(3) global symmetry. Class. Quant. Grav. 10, 285–298 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. O. Bertolami, P.D. Fonseca, and P.V. Moniz: Quantum analysis of the compactification process in the multidimensional Einstein–Yang–Mills system, gr-qc/9710036 (1997)

    Google Scholar 

  46. O. Bertolami, P.D. Fonseca, and P.V. Moniz: Quantum cosmological multidimensional Einstein–Yang–Mills model in a \(\textrm{R} \times S3 \times Sd\) topology. Phys. Rev. D 56, 4530–4543 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  47. O. Bertolami and P.V. Moniz: Decoherence of homogeneous and isotropic geometries in the presence of massive vector fields, gr-qc/9407025 (1993)

    Google Scholar 

  48. O. Bertolami and P.V. Moniz: Decoherence due to massive vector fields with global symmetries, gr-qc/9503008 (1994)

    Google Scholar 

  49. O. Bertolami and P.V. Moniz: Decoherence of homogeneous and isotropic metrics in the presence of massive vector fields, gr-qc/9409042 (1994)

    Google Scholar 

  50. O. Bertolami and P.V. Moniz: Decoherence of Friedmann–Robertson–Walker geometries in the presence of massive vector fields with U(1) or SO(3) global symmetries. Nucl. Phys. B 439, 259–290 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. O. Bertolami, J.M. Mourao, R.F. Picken, and I.P. Volobuev: Dynamics of Euclideanized Einstein–Yang–Mills systems with arbitrary gauge groups. Int. J. Mod. Phys. A 6, 4149–4180 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  52. P.V. Moniz and J.M. Mourao: Homogeneous and isotropic closed cosmologies with a gauge sector. Class. Quant. Grav. 8, 1815–1832 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  53. P.V. Moniz, J.M. Mourao, and P.M. Sa: The dynamics of a flat Friedmann–Robertson–Walker inflationary model in the presence of gauge fields. Class. Quant. Grav. 10, 517–534 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  54. P.M. Sa, M.C. Bento, O. Bertolami, P.V. Moniz, and J.M. Mourao: Friedmann–Robertson–Walker cosmologies in the presence of massive vector fields. In Evora 1992, Proceedings, Classical and Quantum Gravity (1992) pp. 251–255

    Google Scholar 

  55. T. Christodoulakis and C.G. Papadopoulos: Quantization of Robertson–Walker geometry coupled to a spin 3/2 field. Phys. Rev. D 38, 1063 (1988)

    Article  ADS  Google Scholar 

  56. T. Christodoulakis and J. Zanelli: Quantization of Robertson–Walker geometry coupled to fermionic matter. Phys. Rev. D 29, 2738 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  57. T. Christodoulakis and J. Zanelli: Quantum mechanics of the Robertson–Walker geometry. Phys. Lett. A 102, 227 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  58. P.D. D'Eath and J.J. Halliwell: Inclusion of fermions in the wave function of the universe. In Santa Cruz 1986, Proceedings, Mathematics and General Relativity (1986) pp. 321–334

    Google Scholar 

  59. P.D. D'Eath and J.J. Halliwell: Quantum cosmology with fermions. In Liege 1986, Proceedings, Origin and Early History of the Universe (1986) pp. 27–32 (see Conference Index)

    Google Scholar 

  60. P.D. D'Eath and J.J. Halliwell: The inclusion of fermions in quantum cosmological models. In Marseille 1986, Proceedings, Mathematical Physics (1986) pp. 549–556

    Google Scholar 

  61. P.D. D'Eath and J.J. Halliwell: Fermions in quantum cosmology. Phys. Rev. D 35, 1100 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  62. C.J. Isham and J.E. Nelson: Quantization of a coupled Fermi field and Robertson–Walker metric. Phys. Rev. D 10, 3226 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  63. S.V. Shabanov: On minisuperspace gauge models with fermions. In Evora 1992, Proceedings, Classical and Quantum Gravity (1992) pp. 322–331

    Google Scholar 

  64. P.D. D'Eath: Quantization of the Bianchi IX model in supergravity. Phys. Rev. D 48, 713–718 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  65. R. Graham: Supersymmetric general Bianchi type IX cosmology with a cosmological term. Phys. Lett. B 277, 393–397 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  66. R. Graham and H. Luckock: The Hartle–Hawking state for the Bianchi IX model in supergravity. Phys. Rev. D 49, 4981–4984 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  67. A. Csordas and R. Graham: Nontrivial fermion states in supersymmetric minisuperspace, gr-qc/9503054 (1994)

    Google Scholar 

  68. A. Csordas and R. Graham: Supersymmetric minisuperspace with nonvanishing fermion number. Phys. Rev. Lett. 74, 4129–4132 (1995)

    Article  ADS  Google Scholar 

  69. A. Csordas and R. Graham: Hartle–Hawking state in supersymmetric minisuperspace. Phys. Lett. B 373, 51–55 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  70. A.D.Y. Cheng and P.D. D'Eath: Diagonal quantum Bianchi type IX models in N = 1 supergravity. Class. Quant. Grav. 13, 3151–3162 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. P.D. D'Eath: Quantization of the supersymmetric Bianchi I model with a cosmological constant. Phys. Lett. B 320, 12–15 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  72. P.D. D'Eath, S.W. Hawking, and O. Obregon: Supersymmetric Bianchi models and the square root of the Wheeler–DeWitt equation. Phys. Lett. B 300, 44–48 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  73. M. Asano, M. Tanimoto, and N. Yoshino: Supersymmetric bianchi class A models. Phys. Lett. B 314, 303–307 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  74. G.F.R. Ellis and M.A.H. MacCallum: A class of homogeneous cosmological models. Commun. Math. Phys. 12, 108–141 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. M.P. Ryan and L.C. Shepley: Homogeneous Relativistic Cosmologies. Princeton Series in Physics, Princeton University Press, Princeton, NJ (1975)

    Google Scholar 

  76. M.P. Ryan Jr. and S.M. Waller: On the Hamiltonian formulation of class B Bianchi cosmological models, gr-qc/9709012 (1997)

    Google Scholar 

  77. R. Graham and A. Csordas: Quantum states on supersymmetric minisuperspace with a cosmological constant. Phys. Rev. D 52, 5653–5658 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  78. H. Luckock and C. Oliwa: Quantisation of Bianchi class A models in supergravity and the probability density function of the universe. Prepared for 7th Marcel Grossmann Meeting on General Relativity (MG 7), Stanford, CA, 24–30 July 1994

    Google Scholar 

  79. H. Luckock: Boundary conditions for Nicolai maps. J. Phys. A 24, L1057–L1064 (1991)

    Google Scholar 

  80. H. Luckock: Boundary terms for globally supersymmetric actions. Int. J. Theor. Phys. 36, 501–508 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  81. H. Luckock and C. Oliwa: The cosmological probability density function for Bianchi class A models in quantum supergravity. Phys. Rev. D 51, 5483–5490 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  82. A. Csordas and R. Graham: Exact quantum state for N = 1 supergravity. Phys. Rev. D 52, 6656–6659 (1995)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vargas Moniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moniz, P.V. (2010). SQC N=1 SUGRA (Fermionic Differential Operator Representation) . In: Quantum Cosmology - The Supersymmetric Perspective - Vol. 1. Lecture Notes in Physics, vol 803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11575-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11575-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11574-5

  • Online ISBN: 978-3-642-11575-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics