Skip to main content

Optimization of Case-Specific Vascular Tree Models Based on Vessel Size Imaging

  • Conference paper
Biomedical Simulation (ISBMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5958))

Included in the following conference series:

Abstract

We analyze a problem, which is relevant for physiological modeling of vascular networks: the initialization and optimization of specific, individual models of a functioning vessel network. We do not try to describe the process of growing vessels. Rather, the model properties are optimized via similarity metrics between the artificial vessel network and suitable image data. A vascular network model has many degrees of freedom to optimize and it can be assumed that there are many different optimal solutions. In order to reduce the variability between different solutions we enforce certain physiological properties, for instance Murray’s Law, which must be fulfilled by an optimal network. We propose and validate several similarity metrics, which can be used to optimize the radii of the vascular tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Troprès, I., Grimault, S., Vaeth, A., Grillon, E., Julien, C., Payen, J.F., Lamalle, L., Décorps, M.: Vessel size imaging. Magn. Reson. Med. 45(3), 397–408 (2001)

    Article  Google Scholar 

  2. Anderson, A.R., Chaplain, M.A.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology 60(5), 857–899 (1998)

    Article  MATH  Google Scholar 

  3. Szczerba, D., Székely, G.: Simulating vascular systems in arbitrary anatomies. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 641–648. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Lloyd, B.A., Szczerba, D., Rudin, M., Székely, G.: A computational framework for modelling solid tumour growth. Philos. Transact. A Math. Phys. Eng. Sci. (July 2008)

    Google Scholar 

  5. Murray, C.D.: The physiological principle of minimum work: I. the vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12(3), 207–214 (1926)

    Article  Google Scholar 

  6. Klarbring, A., Petersson, J., Torstenfelt, B., Karlsson, M.: Topology optimization of flow networks. Computer Methods in Applied Mechanics and Engineering 192(35-36), 3909–3932 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Schreiner, W., Buxbaum, P.F.: Computer-optimization of vascular trees. IEEE Trans. Biomed. Eng. 40(5), 482–491 (1993)

    Article  Google Scholar 

  8. Karch, R., Neumann, F., Neumann, M., Schreiner, W.: A three-dimensional model for arterial tree representation, generated by constrained constructive optimization. Comput. Biol. Med. 29(1), 19–38 (1999)

    Article  Google Scholar 

  9. Kretowski, M., Rolland, Y., Bézy-Wendling, J., Coatrieux, J.L.: Physiologically based modeling of 3-D vascular networks and CT scan angiography. IEEE Trans. Med. Imaging 22(2), 248–257 (2003)

    Article  Google Scholar 

  10. Kretowski, M., Bézy-Wendling, J., Coupe, P.: Simulation of biphasic ct findings in hepatic cellular carcinoma by a two-level physiological model. IEEE Trans. Biomed. Eng. 54(3), 538–542 (2007)

    Article  Google Scholar 

  11. Mittal, N., Zhou, Y., Ung, S., Linares, C., Molloi, S., Kassab, G.S.: A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data. Ann. Biomed. Eng. 33(8), 1015–1026 (2005)

    Article  Google Scholar 

  12. Kassab, G.S.: Scaling laws of vascular trees: of form and function. Am. J. Physiol. Heart Circ. Physiol. 290(2), 894–903 (2006)

    Article  Google Scholar 

  13. Kaimovitz, B., Huo, Y., Lanir, Y., Kassab, G.S.: Diameter asymmetry of porcine coronary arterial trees: structural and functional implications. Am. J. Physiol. Heart Circ. Physiol. 294(2), H714–H723 (2008)

    Google Scholar 

  14. Huo, Y., Kassab, G.S.: A scaling law of vascular volume. Biophys. J. 96(2), 347–353 (2009)

    Article  Google Scholar 

  15. Troprès, I., Lamalle, L., Péoc’h, M., Farion, R., Usson, Y., Décorps, M., Rémy, C.: In vivo assessment of tumoral angiogenesis. Magn. Reson. Med. 51(3), 533–541 (2004)

    Article  Google Scholar 

  16. Carroll, R.J., Ruppert, D.: Transformation and weighting in regression. Monographs on statistics and applied probability. Chapman and Hall, Boca Raton (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lloyd, B.A., Hirsch, S., Székely, G. (2010). Optimization of Case-Specific Vascular Tree Models Based on Vessel Size Imaging. In: Bello, F., Cotin, S. (eds) Biomedical Simulation. ISBMS 2010. Lecture Notes in Computer Science, vol 5958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11615-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11615-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11614-8

  • Online ISBN: 978-3-642-11615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics