Skip to main content

Wrapping as a Selectivity Filter for Molecular Targeted Therapy: Preliminary Evidence

  • Chapter
  • First Online:
Transformative Concepts for Drug Design: Target Wrapping
  • 514 Accesses

Abstract

The conservation of structure across homolog proteins often diffuses the impact of drug-based inhibition by promoting alternative protein–ligand associations that may ultimately lead to toxic side effects. This problem becomes particularly acute when attempting to interfere with signaling pathways involved in cell fate and cell proliferation, the type of molecular intervention often exploited in molecular anticancer therapy. This is because the clinically relevant targets, the kinases, evolved from each other and hence share an uncanny structural resemblance. However, as shown in the previous chapter, the sticky wrapping defects or dehydrons are typically not conserved across proteins of common ancestry, making them valuable a priori targets to enhance specificity. Thus, nonconserved packing defects may be utilized as selectivity switches across homolog targets. This chapter explores this paradigmatic concept and its ramifications for the rational design of drugs with controlled specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernández A (2005) Incomplete protein packing as a selectivity filter in drug design. Structure 13:1829–1836

    Article  Google Scholar 

  2. Fernández A, Scott R, Berry RS (2004) The nonconserved wrapping of conserved folds reveals a trend towards increasing connectivity in proteomic networks. Proc Natl Acad Sci USA 101:2823–2827

    Article  Google Scholar 

  3. Fernández A, Berry RS (2004) Molecular dimension explored in evolution to promote proteomic complexity. Proc Natl Acad Sci USA 101:13460–13465

    Article  Google Scholar 

  4. Fernández A, Berry RS (2002) Extent of hydrogen-bond protection in folded proteins: A constraint on packing architectures. Biophys J 83:2475–2481

    Article  Google Scholar 

  5. Fernández A, Berry RS (2003) Proteins with hydrogen-bond packing defects are highly interactive with lipid bilayers: Implications for amyloidogenesis. Proc Natl Acad Sci USA 100:2391–2396

    Article  Google Scholar 

  6. Fernández A, Rogale K, Scott LR, Scheraga HA (2004) Inhibitor design by wrapping packing defects in HIV-1 proteins. Proc Natl Acad Sci USA 101:11640–11645

    Article  Google Scholar 

  7. Deremble C, Lavery R (2005) Macromolecular recognition. Curr Opin Str Biol 15:171–175

    Article  Google Scholar 

  8. Fernández A, Scheraga HA (2003) Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proc Natl Acad Sci USA 100:113–118

    Article  Google Scholar 

  9. Ban Y-E, Edelsbrunner H, Rudolph J (2006) Interface surfaces for protein-protein complexes. J Assoc Comp Mach 53:361–378

    MathSciNet  Google Scholar 

  10. Adesokan AA, Roberts VA, Lee KW, Linz RD, Briggs JM (2004) Prediction of HIV-1 integrase/viral DNA interactions in the catalytic domain by fast molecular docking. J Med Chem 47:821–828

    Article  Google Scholar 

  11. Kortemme T, Baker D (2004) Computational design of protein-protein interactions. Curr Opin Chem Bio 8:91097

    Google Scholar 

  12. Kortvelyesi T, Silberstein M, Dennis S, Vajda S (2003) Improved mapping of protein binding sites. J Comput Aided Mol Des 17:173–186

    Article  Google Scholar 

  13. Lu L, Lu H, Skolnick J (2002) Multiprospector: An algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins Struct Funct Genet 49:350–364

    Article  Google Scholar 

  14. Sen TZ, Kloczkowski A, Jernigan RL et al (2004) Predicting binding sites of hydrolase-inhibitor complexes by combining several methods. BMC Bioinform 5:205–215.

    Article  Google Scholar 

  15. Huber R (1979) Conformational flexibility in protein molecules. Nature 280:538–539

    Article  Google Scholar 

  16. Dunker KA, Brown C, Obradovic Z (2002) Identification and function of usefully disordered proteins. Adv Protein Chem 62:25–49

    Article  Google Scholar 

  17. Verkhivker G, Bouzida D, Gehehaar D, Rejto P, Freer ST, Rose P (2003) Simulating disorder-order transition in molecular recognition of unstructured proteins: Where folding meets binding. Proc Natl Acad Sci USA 100:5148–5153

    Article  Google Scholar 

  18. Fernández A, Crespo A (2008) Protein wrapping: A molecular marker for association, aggregation and drug design. Chem Soc Rev 37:2372–2382

    Article  Google Scholar 

  19. Stevens RC (2004) Long live structural biology. Nat Struct Mol Biol 11:293–295

    Article  Google Scholar 

  20. Fauman EB, Hopkins A, Groom C (2003) Structural bioinformatics in drug discovery. In: Structural Bioinformatics, Bourne P, Weissig H, eds, Wiley-Liss, New York

    Google Scholar 

  21. Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27:249–284

    Article  Google Scholar 

  22. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    Article  Google Scholar 

  23. Katz BA (2000) Structural basis for selectivity of a small molecule, S1-Binding, submicromolar inhibitor of urokinase-type plasminogen activator. Chem Biol 7:299–307

    Article  Google Scholar 

  24. Steinmetzer T, Hauptmann J, Sturzebecher J (2001) Expert Opin Invest Drugs 10:845–864

    Article  Google Scholar 

  25. Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct Genet 11: 281–196

    Google Scholar 

  26. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  Google Scholar 

  27. Lee B, Richards FM (1971) The interpretation of protein structures: Estimation of static accessibility. J Mol Biol 55:379–400

    Article  Google Scholar 

  28. Fernández A, Scott LR (2003) Adherence of packing defects in soluble proteins. Phys Rev Lett 91:18102

    Article  Google Scholar 

  29. Fernández A, Scott LR (2003) Dehydron: A structure encoded signal for protein interactions. Biophys J 85:1914–1928

    Article  Google Scholar 

  30. Munshi S, Chen Z, Li Y et al (1998) Rapid X-ray diffraction analysis of HIV-1 protease-inhibitor complexes: Inhibitor exchange in single crystals of the bound enzyme. Acta Crystallogr D 54:1053–1060

    Article  Google Scholar 

  31. Mount DW (2001) Bioinformatics, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  32. Karaman MW, Herrgard S, Treiber DK et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132

    Article  Google Scholar 

  33. NIH/NCBI website for the structural alignment program Cn3D. http://www.ncbi.nlm.nih.gov/structure/CN3D/cn3d.shtml

  34. Schindler T, Bornmann W, Pellicena P et al (2000) Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289:1938–1942

    Article  Google Scholar 

  35. Attoub S, Rivat C, Rodrigues S et al (2002) The C-kit tyrosine kinase inhibitor STI-571 for colorectal cancer therapy. Cancer Res 62:4879–4883

    Google Scholar 

  36. Skene RJ, Kraus ML, Scheibe DN (2004) Structural basis for autoinhibition and STI-571 inhibition of C-kit tyrosine kinase. J Biol Chem 279:31655–31663

    Article  Google Scholar 

  37. Perlmutter RM, Marth JD, Lewis DB et al (1988) Structure and expression of lck transcripts in human lymphoid cells. J Cell Biochem 38:117–126

    Article  Google Scholar 

  38. Li J, Johnson D, Sliskovic D, Roth B (2004) Contemporary Drug Synthesis. Wiley Interscience, Hoboken

    Book  Google Scholar 

  39. Fernández A, Sanguino A, Peng Z et al (2007) An anticancer C-kit kinase inhibitor is re-engineered to make it more active and less cardiotoxic. J Clin Invest 117:4044–4054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Fernandez .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernandez, A. (2010). Wrapping as a Selectivity Filter for Molecular Targeted Therapy: Preliminary Evidence. In: Transformative Concepts for Drug Design: Target Wrapping. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11792-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11792-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11791-6

  • Online ISBN: 978-3-642-11792-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics