Skip to main content

Factors Influencing the Optic Nerve Head Blood Flow

  • Chapter
  • First Online:
Ischemic Optic Neuropathies
  • 1278 Accesses

Abstract

In ischemic optic neuropathies, ischemia is due to deranged blood flow in the optic nerve. To understand their pathogenesis and management a firm grasp of the following is crucial: (i) the blood supply of the optic nerve (as discussed before – see Chap. 3), and (ii) the factors that influence the blood flow of the optic nerve head (ONH). It is the lack of in-depth knowledge of these two factors which is responsible for most of the controversy and confusion on ischemic optic neuropathies. The purpose of this chapter is an attempt to present a brief overview of the current state of our knowledge about the factors that finally determine the state of the circulation in the ONH, as discussed previously [1,2].

For a complete bibliography and detailed review of previously published studies in the literature on the subject, please refer to bibliography in previous publications listed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayreh SS. Factors influencing blood flow in the optic nerve head. J Glaucoma. 1997;6(6):412–25. 1998;7:71.

    Google Scholar 

  2. Hayreh SS. Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res. 2001;20:595–624.

    PubMed  CAS  Google Scholar 

  3. Hayreh SS. Duke-Elder lecture. Systemic arterial blood pressure and the eye. Eye. 1996;10(Pt 1):5–28.

    PubMed  Google Scholar 

  4. Anderson DR. Glaucoma, capillaries and pericytes. 1. Blood flow regulation. Ophthalmologica. 1996;210(5):257–62.

    PubMed  CAS  Google Scholar 

  5. Anderson DR, Davis EB. Glaucoma, capillaries and pericytes. 2. Identification and characterization of retinal pericytes in culture. Ophthalmologica. 1996;210(5):263–8.

    PubMed  CAS  Google Scholar 

  6. Haefliger IO, Zschauer A, Anderson DR. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci. 1994;35(3):991–7.

    PubMed  CAS  Google Scholar 

  7. Orgül S, Meyer P, Cioffi GA. Physiology of blood flow regulation and mechanisms involved in optic nerve perfusion. J Glaucoma. 1995;4:427–43.

    Google Scholar 

  8. Sullivan SM, Johnson PC. Effect of oxygen on blood flow autoregulation in cat sartorius muscle. Am J Physiol. 1981;241(6):H807–15.

    PubMed  CAS  Google Scholar 

  9. Johnson PC. Autoregulation of blood flow. Circ Res. 1986;59(5):483–95.

    PubMed  CAS  Google Scholar 

  10. Cowley AW, Hinojosa-Laborde C, Barber BJ, Harder DR, Lombard JH, Greene AS. Short-term autoregulation of systemic blood flow and cardiac output. News Physiol Sci. 1989;4:219–25.

    Google Scholar 

  11. Siegel G, Kämpe C, Ebeling BJ. pH-dependent myogenic control in cerebral vascular smooth muscle. In: Cervos-Navarro J, Fritschka E, editors. Cerebral microcirculation and metabolism. New York: Raven; 1981. p. 213–26.

    Google Scholar 

  12. Harder DR, Madden JA. Cellular mechanism of force development in cat middle cerebral artery by reduced pCO2. Pflugers Arch. 1985;403(4):402–6.

    PubMed  CAS  Google Scholar 

  13. Wray S. Smooth muscle intracellular pH: measurement, ­regulation, and function. Am J Physiol. 1988;254(2 Pt 1):C213–25.

    PubMed  CAS  Google Scholar 

  14. Aalkjaer C. Regulation of intracellular pH and its role in vascular smooth muscle function. J Hypertens. 1990;8(3):197–206.

    PubMed  CAS  Google Scholar 

  15. Wei EP, Ellis EF, Kontos HA. Role of prostaglandins in pial arteriolar response to CO2 and hypoxia. Am J Physiol. 1980;238(2):H226–30.

    PubMed  CAS  Google Scholar 

  16. Anderson DR, Davis EB. Glaucoma, capillaries and ­pericytes. 5. Preliminary evidence that carbon dioxide relaxes pericyte contractile tone. Ophthalmologica. 1996;210(5):280–4.

    PubMed  CAS  Google Scholar 

  17. Harder DR. Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ Res. 1984;55(2):197–202.

    PubMed  CAS  Google Scholar 

  18. Osol G, Halpern W. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am J Physiol. 1985;249(5 Pt 2):H914–21.

    PubMed  CAS  Google Scholar 

  19. Harder DR, Gilbert R, Lombard JH. Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. Am J Physiol. 1987;253(4 Pt 2):F778–81.

    PubMed  CAS  Google Scholar 

  20. Harder DR. Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res. 1987;60(1):102–7.

    PubMed  CAS  Google Scholar 

  21. Harder DR, Kauser K, Roman RJ, Lombard JH. Mechanisms of pressure-induced myogenic activation of cerebral and renal arteries: role of the endothelium. J Hypertens Suppl. 1989;7(4 Suppl):S11–5.

    PubMed  CAS  Google Scholar 

  22. Davies PF, Tripathi SC. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res. 1993;72(2):239–45.

    PubMed  CAS  Google Scholar 

  23. Bill A. Autonomic nervous control of uveal blood flow. Acta Physiol Scand. 1962;56:70–81.

    PubMed  CAS  Google Scholar 

  24. Bill A. Aspects of physiological and pharmacological regulation of uveal blood flow. Acta Soc Med Ups. 1962;67:122–34.

    CAS  Google Scholar 

  25. Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev. 1975;55(3):383–417.

    PubMed  CAS  Google Scholar 

  26. Bill A. Some aspects of the ocular circulation. Friedenwald lecture. Invest Ophthalmol Vis Sci. 1985;26(4):410–24.

    PubMed  CAS  Google Scholar 

  27. Ehinger B. Adrenergic nerves to the eye and to related structures in man and in the cynomolgus monkey (Macaca irus). Invest Ophthalmol. 1966;5:42–52.

    Google Scholar 

  28. Ruskell GL. Facial parasympathetic innervation of the choroidal blood vessels in monkeys. Exp Eye Res. 1971;12(2):166–72.

    PubMed  CAS  Google Scholar 

  29. Alm A, Bill A. The effect of stimulation of the cervical sympathetic chain on retinal oxygen tension and on uveal, retinal and cerebral blood flow in cats. Acta Physiol Scand. 1973;88(1):84–94.

    PubMed  CAS  Google Scholar 

  30. Alm A. The effect of sympathetic stimulation on blood flow through the uvea, retina and optic nerve in monkeys (Macaca irus). Exp Eye Res. 1977;25(1):19–24.

    PubMed  CAS  Google Scholar 

  31. Matsusaka T. An evidence for adrenergic involvement in the choroidal circulation. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1981;216(1):17–21.

    PubMed  CAS  Google Scholar 

  32. Morgan TR, Green K, Bowman K. Effects of adrenergic agonists upon regional ocular blood flow in normal and ganglionectomized rabbits. Exp Eye Res. 1981;32(6):691–7.

    PubMed  CAS  Google Scholar 

  33. Bill A, Sperber GO. Aspects of oxygen and glucose consumption in the retina: effects of high intraocular pressure and light. Graefes Arch Clin Exp Ophthalmol. 1990;228(2):124–7.

    PubMed  CAS  Google Scholar 

  34. Bill A, Sperber GO. Control of retinal and choroidal blood flow. Eye. 1990;4(Pt 2):319–25.

    PubMed  Google Scholar 

  35. Bill A, Sperber G, Ujiie K. Physiology of the choroidal vascular bed. Int Ophthalmol. 1983;6(2):101–7.

    PubMed  CAS  Google Scholar 

  36. Grajewski AL, Ferrari-Dileo G, Feuer WJ, Anderson DR. Beta-adrenergic responsiveness of choroidal vasculature. Ophthalmology. 1991;98(6):989–95.

    PubMed  CAS  Google Scholar 

  37. Riva CE, Cranstoun SD, Mann RM, Barnes GE. Local choroidal blood flow in the cat by laser Doppler flowmetry. Invest Ophthalmol Vis Sci. 1994;35(2):608–18.

    PubMed  CAS  Google Scholar 

  38. Abe S, Karita K, Izumi H, Tamai M. Increased and decreased choroidal blood flow elicited by cervical sympathetic nerve stimulation in the cat. Jpn J Physiol. 1995;45(2):347–53.

    PubMed  CAS  Google Scholar 

  39. Zagvazdin YS, Fitzgerald ME, Sancesario G, Reiner A. Neural nitric oxide mediates Edinger-Westphal nucleus evoked increase in choroidal blood flow in the pigeon. Invest Ophthalmol Vis Sci. 1996;37(4):666–72.

    PubMed  CAS  Google Scholar 

  40. Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res. 1973;15(1):15–29.

    PubMed  CAS  Google Scholar 

  41. Ernest JT, Potts AM. Pathophysiology of the distal portion of the optic nerve. IV. Local temperature as a measure of blood flow. Am J Ophthalmol. 1971;72(2):433–44.

    PubMed  CAS  Google Scholar 

  42. Ernest JT. Autoregulation of optic-disk oxygen tension. Invest Ophthalmol. 1974;13(2):101–6.

    PubMed  CAS  Google Scholar 

  43. Ernest JT. Optic disc blood flow. Trans Ophthalmol Soc UK. 1976;96(3):348–51.

    PubMed  CAS  Google Scholar 

  44. Ernest JT. Optic disk oxygen tension. Exp Eye Res. 1977;24(3):271–8.

    PubMed  CAS  Google Scholar 

  45. Ernest JT. Autoregulation of blood flow in the distal segment of the optic nerve. In: Krieglstein GK, Leydhecker W, editors. Glaucoma update. Heidelberg: Springer; 1979. p. 93–100.

    Google Scholar 

  46. Geijer C, Bill A. Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci. 1979;18(10):1030–42.

    PubMed  CAS  Google Scholar 

  47. Sossi N, Anderson DR. Effect of elevated intraocular ­pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125. Arch Ophthalmol. 1983;101(1):98–101.

    PubMed  CAS  Google Scholar 

  48. Weinstein JM, Duckrow RB, Beard D, Brennan RW. Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci. 1983;24(12):1559–65.

    PubMed  CAS  Google Scholar 

  49. Robert Y, Maurer W. Pallor of the optic disc in glaucoma patients with artificial hypertension. Doc Ophthalmol. 1984;57(3):203–14.

    PubMed  CAS  Google Scholar 

  50. Robert Y, Grauwiller T, Hendrickson P, Brunner HR. Die Autoregulation der Papillengefasse und ihr Verhalten unter Halothan. [Autoregulation of the papillary vessels and their behavior as affected by halothane]. Klin Monatsbl Augenheilkd. 1988;192(2):117–21.

    PubMed  CAS  Google Scholar 

  51. Robert Y, Steiner D, Hendrickson P. Papillary circulation dynamics in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1989;227(5):436–9.

    PubMed  CAS  Google Scholar 

  52. Sperber GO, Bill A. Blood flow and glucose consumption in the optic nerve, retina and brain: effects of high intraocular pressure. Exp Eye Res. 1985;41(5):639–53.

    PubMed  CAS  Google Scholar 

  53. Pillunat LE, Stodtmeister R, Wilmanns I, Christ T. Autoregulation of ocular blood flow during changes in intraocular pressure. Preliminary results. Graefes Arch Clin Exp Ophthalmol. 1985;223(4):219–23.

    PubMed  CAS  Google Scholar 

  54. Pillunat LE, Stodtmeister R, Wilmanns I, Christ T. Drucktoleranztest des Sehnervenkopfes bei okularer Hypertension. [A test of pressure tolerance of the optic nerve head in ocular hypertension]. Klin Monatsbl Augenheilkd. 1986;188(1):39–44.

    PubMed  CAS  Google Scholar 

  55. Pillunat LE, Stodtmeister R, Wilmanns I. Pressure com­pliance of the optic nerve head in low tension glaucoma. Br J Ophthalmol. 1987;71(3):181–7.

    PubMed  CAS  Google Scholar 

  56. Bill A, Sperber GO. Blood flow and glucose consumption in the optic nerve: effects of high intraocular pressure. In: Krieglstein GK, editor. Glaucoma update III. Heidelberg: Springer; 1987. p. 51–7.

    Google Scholar 

  57. Novack RL, Stefansson E, Hatchell DL. Intraocular pressure effects on optic nerve-head oxidative metabolism measured in vivo. Graefes Arch Clin Exp Ophthalmol. 1990;228(2):128–33.

    PubMed  CAS  Google Scholar 

  58. Alm A, Bill A. Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures. Acta Physiol Scand. 1970;80(1):19–28.

    PubMed  CAS  Google Scholar 

  59. Alm A, Bill A. The oxygen supply to the retina. I. Effects of changes in intraocular and arterial blood pressures, and in arterial P O2 and P CO2 on the oxygen tension in the vitreous body of the cat. Acta Physiol Scand. 1972;84(2):261–74.

    PubMed  CAS  Google Scholar 

  60. Alm A, Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand. 1972;84(3):306–19.

    PubMed  CAS  Google Scholar 

  61. Takats I, Leiszter F. Relationship between blood flow ­velocity in the choroid and intraocular pressure in rabbits. Acta Ophthalmol (Copenh). 1979;57(1):48–54.

    CAS  Google Scholar 

  62. Kiel JW, van Heuven WA. Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci. 1995;36(3):579–85.

    PubMed  CAS  Google Scholar 

  63. Reiner A, Zagvazdin Y, Fitzgerald ME. Choroidal blood flow in pigeons compensates for decreases in arterial blood pressure. Exp Eye Res. 2003;76(3):273–82.

    PubMed  CAS  Google Scholar 

  64. Reiner A, Li C, Del Mar N, Fitzgerald ME. Choroidal blood flow compensation in rats for arterial blood pressure decreases is neuronal nitric oxide-dependent but compensation for arterial blood pressure increases is not. Exp Eye Res. 2010;90(6):734–41.

    PubMed  CAS  Google Scholar 

  65. Porsaa K. Experimental studies on the vasomotor innervation of the retinal arteries. Acta Ophthalmol (Copenh). 1941;Suppl. 18.

    Google Scholar 

  66. Russell RW. Observations on intracerebral aneurysms. Brain. 1963;86:425–42.

    Google Scholar 

  67. Dollery CT, Hill DW, Hodge JV. The response of normal retinal blood vessels to angiotensin and noradrenaline. J Physiol Lond. 1963;165:500–7.

    PubMed  CAS  Google Scholar 

  68. Sperber GO, Bill A. The 2-deoxyglucose method and ocular blood flow. In: Lambrou GN, Greve E, editors. Ocular blood flow in glaucoma. Amsterdam: Kugler & Ghedini; 1989. p. 73–80.

    Google Scholar 

  69. Hayreh SS, Bill A, Sperber GO. Effects of high intraocular pressure on the glucose metabolism in the retina and optic nerve in old atherosclerotic monkeys. Graefes Arch Clin Exp Ophthalmol. 1994;232(12):745–52.

    PubMed  CAS  Google Scholar 

  70. Haefliger IO, Meyer P, Flammer J, Lüscher TF. The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology? Surv Ophthalmol. 1994;39(2):123–32.

    PubMed  CAS  Google Scholar 

  71. Hayreh SS, Servais GE, Virdi PS. Fundus lesions in malignant hypertension. V. Hypertensive optic neuropathy. Ophthalmology. 1986;93(1):74–87.

    PubMed  CAS  Google Scholar 

  72. Hayreh SS, Bill A, Sperber GO. Metabolic effects of high intraocular pressure in old arteriosclerotic monkeys. Invest Ophthalmol Vis Sci. 1991;32(4):810.

    Google Scholar 

  73. Hayreh SS, Podhajsky PA, Zimmerman B. Nonarteritic anterior ischemic optic neuropathy: time of onset of visual loss. Am J Ophthalmol. 1997;124(5):641–7.

    PubMed  CAS  Google Scholar 

  74. Rubanyi GM. Cardiovascular significance of endothelium-derived vasoactive factors. 1st ed. Mount Kisco: Futura; 1991.

    Google Scholar 

  75. Ryan US, Rubanyi GM. Endothelial regulation of vascular tone. 1st ed. New York: Marcel Dekker; 1992.

    Google Scholar 

  76. Vanhoutte PM. The endothelium: modulator of vascular smooth-muscle tone. N Engl J Med. 1988;319(8):512–3.

    PubMed  CAS  Google Scholar 

  77. Davies MG, Hagen PO. The vascular endothelium. A new horizon. Ann Surg. 1993;218(5):593–609.

    PubMed  CAS  Google Scholar 

  78. Suzuki M, Ohyama Y, Satoh S. Conversion of angiotensin I to angiotensin II and inactivation of bradykinin in canine peripheral vascular beds. J Cardiovasc Pharmacol. 1984;6(2):244–50.

    PubMed  CAS  Google Scholar 

  79. Dzau VJ. Vascular renin-angiotensin: a possible autocrine or paracrine system in control of vascular function. J Cardiovasc Pharmacol. 1984;6 Suppl 2:S377–82.

    PubMed  Google Scholar 

  80. Dzau VJ. Significance of the vascular renin-angiotensin pathway. Hypertension. 1986;8(7):553–9.

    PubMed  CAS  Google Scholar 

  81. Dzau VJ. Implications of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol. 1987;59(2):59A–65A.

    PubMed  CAS  Google Scholar 

  82. Lindsey CJ, Bendhack LM, Paiva AC. Effects of teprotide, captopril and enalaprilat on arterial wall kininase and angiotensin converting activity. J Hypertens Suppl. 1987;5(2):S71–6.

    PubMed  CAS  Google Scholar 

  83. Lüscher TF. Imbalance of endothelium-derived relaxing and contracting factors. A new concept in hypertension? Am J Hypertens. 1990;3(4):317–30.

    PubMed  Google Scholar 

  84. Lüscher TF, Raij L, Vanhoutte PM. Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension. 1987;9(2):157–63.

    PubMed  Google Scholar 

  85. Forte P, Copland M, Smith LM, Milne E, Sutherland J, Benjamin N. Basal nitric oxide synthesis in essential hypertension. Lancet. 1997;349(9055):837–42.

    PubMed  CAS  Google Scholar 

  86. de Saenz TI, Goldstein I, Azadzoi K, Krane RJ, Cohen RA. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med. 1989;320(16):1025–30.

    Google Scholar 

  87. Tesfamariam B, Jakubowski JA, Cohen RA. Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2. Am J Physiol. 1989;257(5 Pt 2):H1327–33.

    PubMed  CAS  Google Scholar 

  88. Ku DD. Coronary vascular reactivity after acute myocardial ischemia. Science. 1982;218(4572):576–8.

    PubMed  CAS  Google Scholar 

  89. VanBenthuysen KM, McMurtry IF, Horwitz LD. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J Clin Invest. 1987;79(1):265–74.

    PubMed  CAS  Google Scholar 

  90. Pearson PJ, Schaff HV, Vanhoutte PM. Long-term impairment of endothelium-dependent relaxations to aggregating platelets after reperfusion injury in canine coronary arteries. Circulation. 1990;81(6):1921–7.

    PubMed  CAS  Google Scholar 

  91. Clavier N, Kirsch JR, Hurn PD, Traystman RJ. Effect of postischemic hypoperfusion on vasodilatory mechanisms in cats. Am J Physiol. 1994;267(5 Pt 2):H2012–8.

    PubMed  CAS  Google Scholar 

  92. Myers PR, Muller JM, Tanner MA. Effects of oxygen ­tension on endothelium dependent responses in canine coronary microvessels. Cardiovasc Res. 1991;25(11):885–94.

    PubMed  CAS  Google Scholar 

  93. Liu J, Chen R, Casley DJ, Nayler WG. Ischemia and reperfusion increase 125I-labeled endothelin-1 binding in rat cardiac membranes. Am J Physiol. 1990;258(3 Pt 2):H829–35.

    PubMed  CAS  Google Scholar 

  94. Miyauchi T, Yanagisawa M, Tomizawa T, Sugishita Y, Suzuki N, Fujino M, et al. Increased plasma concentrations of endothelin-1 and big endothelin-1 in acute myocardial infarction. Lancet. 1989;2(8653):53–4.

    PubMed  CAS  Google Scholar 

  95. Watanabe T, Suzuki N, Shimamoto N, Fujino M, Imada A. Endothelin in myocardial infarction. Nature. 1990;344(6262):114.

    PubMed  CAS  Google Scholar 

  96. Rubanyi GM, Vanhoutte PM. Hypoxia releases a vasoconstricting substance from the canine vascular endothelium. J Physiol Lond. 1985;364:45–56.

    PubMed  CAS  Google Scholar 

  97. Kourembanas S, Marsden PA, McQuillan LP, Faller DV. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J Clin Invest. 1991;88(3):1054–7.

    PubMed  CAS  Google Scholar 

  98. Todd AS. The histological localisation of fibrinolysin activator. J Pathol Bacteriol. 1959;78:281–3.

    PubMed  CAS  Google Scholar 

  99. Dosne AM, Dupuy E, Bodevin E. Production of a fibrinolytic inhibitor by cultured endothelial cells derived from human umbilical vein. Thromb Res. 1978;12(3):377–87.

    PubMed  CAS  Google Scholar 

  100. Vanhoutte PM, Houston DS. Platelets, endothelium, and vasospasm. Circulation. 1985;72(4):728–34.

    PubMed  CAS  Google Scholar 

  101. Heistad DD, Armstrong ML, Marcus ML, Piegors DJ, Mark AL. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res. 1984;54(6):711–8.

    PubMed  CAS  Google Scholar 

  102. Jayakody RL, Senaratne MP, Thomson AB, Kappagoda CT. Cholesterol feeding impairs endothelium-dependent relaxation of rabbit aorta. Can J Physiol Pharmacol. 1985;63(9):1206–9.

    PubMed  CAS  Google Scholar 

  103. Freiman PC, Mitchell GG, Heistad DD, Armstrong ML, Harrison DG. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res. 1986;58(6):783–9.

    PubMed  CAS  Google Scholar 

  104. Habib JB, Bossaller C, Wells S, Williams C, Morrisett JD, Henry PD. Preservation of endothelium-dependent vas­cular relaxation in cholesterol-fed rabbit by treatment with the calcium blocker PN 200110. Circ Res. 1986;58(2):305–9.

    PubMed  CAS  Google Scholar 

  105. Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest. 1987;79(1):170–4.

    PubMed  CAS  Google Scholar 

  106. Faraci FM, Lopez AG, Breese K, Armstrong ML, Heistad DD. Effect of atherosclerosis on cerebral vascular responses to activation of leukocytes and platelets in monkeys. Stroke. 1991;22(6):790–6.

    PubMed  CAS  Google Scholar 

  107. Tagawa H, Tomoike H, Nakamura M. Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res. 1991;68(2):330–7.

    PubMed  CAS  Google Scholar 

  108. Minor Jr RL, Myers PR, Guerra Jr R, Bates JN, Harrison DG. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest. 1990;86(6):2109–16.

    PubMed  CAS  Google Scholar 

  109. Yamamoto H, Bossaller C, Cartwright Jr J, Henry PD. Videomicroscopic demonstration of defective cholinergic arteriolar vasodilation in atherosclerotic rabbit. J Clin Invest. 1988;81(6):1752–8.

    PubMed  CAS  Google Scholar 

  110. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest. 1991;21(4):361–74.

    PubMed  CAS  Google Scholar 

  111. Golino P, Piscione F, Willerson JT, Cappelli-Bigazzi M, Focaccio A, Villari B, et al. Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med. 1991;324(10):641–8.

    PubMed  CAS  Google Scholar 

  112. McFadden EP, Clarke JG, Davies GJ, Kaski JC, Haider AW, Maseri A. Effect of intracoronary serotonin on coronary vessels in patients with stable angina and patients with variant angina. N Engl J Med. 1991;324(10):648–54.

    PubMed  CAS  Google Scholar 

  113. Bergua A. Nitrergische Reaktivitat in den Endothelzellen der menschlichen uvealen Gefasse. [Nitrergic reactivity in endothelial cells of human uveal blood vessels]. Klin Monatsbl Augenheilkd. 1995;206(2):115–21.

    PubMed  CAS  Google Scholar 

  114. Chakravarthy U, Stitt AW, McNally J, Bailie JR, Hoey EM, Duprex P. Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes. Curr Eye Res. 1995;14(4):285–94.

    PubMed  CAS  Google Scholar 

  115. Shiells R, Falk G. Retinal on-bipolar cells contain a nitric oxide-sensitive guanylate cyclase. NeuroReport. 1992;3(10):845–8.

    PubMed  CAS  Google Scholar 

  116. Lau KC, So KF, Tay D, Leung MC. NADPH-diaphorase neurons in the retina of the hamster. J Comp Neurol. 1994;350(4):550–8.

    PubMed  CAS  Google Scholar 

  117. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA. 1991;88(17):7797–801.

    PubMed  CAS  Google Scholar 

  118. Nyborg NC, Nielsen PJ. The level of spontaneous myogenic tone in isolated human posterior ciliary arteries decreases with age. Exp Eye Res. 1990;51(6):711–5.

    PubMed  CAS  Google Scholar 

  119. Nyborg NC, Prieto D, Benedito S, Nielsen PJ. Endothelin-1-induced contraction of bovine retinal small arteries is reversible and abolished by nitrendipine. Invest Ophthalmol Vis Sci. 1991;32(1):27–31.

    PubMed  CAS  Google Scholar 

  120. Yao K, Tschudi M, Flammer J, Lüscher TF. Endothelium-dependent regulation of vascular tone of the porcine ­ophthalmic artery. Invest Ophthalmol Vis Sci. 1991;32(6):1791–8.

    PubMed  CAS  Google Scholar 

  121. Haefliger IO, Flammer J, Luscher TF. Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci. 1992;33(7):2340–3.

    PubMed  CAS  Google Scholar 

  122. Haefliger IO, Flammer J, Luscher TF. Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci. 1993;34(5):1722–30.

    PubMed  CAS  Google Scholar 

  123. Meyer P, Flammer J, Lüscher TF. Local anesthetic drugs reduce endothelium-dependent relaxations of porcine ciliary arteries. Invest Ophthalmol Vis Sci. 1993;34(9):2730–6.

    PubMed  CAS  Google Scholar 

  124. Meyer P, Flammer J, Lüscher TF. Endothelium-dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. Invest Ophthalmol Vis Sci. 1993;34(13):3614–21.

    PubMed  CAS  Google Scholar 

  125. Meyer P, Flammer J, Lüscher TF. Local action of the renin angiotensin system in the porcine ophthalmic circulation: effects of ACE-inhibitors and angiotensin receptor antagonists. Invest Ophthalmol Vis Sci. 1995;36(3):555–62.

    PubMed  CAS  Google Scholar 

  126. Mann RM, Riva CE, Stone RA, Barnes GE, Cranstoun SD. Nitric oxide and choroidal blood flow regulation. Invest Ophthalmol Vis Sci. 1995;36(5):925–30.

    PubMed  CAS  Google Scholar 

  127. Zhu P, Bény JL, Flammer J, Lüscher TF, Haefliger IO. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels. Invest Ophthalmol Vis Sci. 1997;38(9):1761–7.

    PubMed  CAS  Google Scholar 

  128. Nyborg NC, Nielsen PJ. Angiotensin-II contracts isolated human posterior ciliary arteries. Invest Ophthalmol Vis Sci. 1990;31(11):2471–3.

    PubMed  CAS  Google Scholar 

  129. Ferrari-Dileo G, Davis EB, Anderson DR. Angiotensin II binding receptors in retinal and optic nerve head blood vessels. An autoradiographic approach. Invest Ophthalmol Vis Sci. 1991;32(1):21–6.

    PubMed  CAS  Google Scholar 

  130. Neufeld AH, Hernandez MR, Gonzalez M. Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol. 1997;115(4):497–503.

    PubMed  CAS  Google Scholar 

  131. Hayreh SS, Servais GE, Virdi PS. Fundus lesions in malignant hypertension. VI. Hypertensive choroidopathy. Ophthalmology. 1986;93(11):1383–400.

    PubMed  CAS  Google Scholar 

  132. Hayreh SS, Piegors DJ, Heistad DD. Serotonin-induced constriction of ocular arteries in atherosclerotic monkeys. Implications for ischemic disorders of the retina and optic nerve head. Arch Ophthalmol. 1997;115(2):220–8.

    PubMed  CAS  Google Scholar 

  133. Hayreh SS. Anterior ischaemic optic neuropathy. Differentiation of arteritic from non-arteritic type and its management. Eye. 1990;4(Pt 1):25–41.

    PubMed  Google Scholar 

  134. Cioffi GA, Orgül S, Onda E, Bacon DR, Van Buskirk EM. An in vivo model of chronic optic nerve ischemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. Curr Eye Res. 1995;14(12):1147–53.

    PubMed  CAS  Google Scholar 

  135. Cioffi GA, Orgül S. The effects of chronic optic nerve ­ischemia in the rabbit. In: Drance SM, editor. Vascular risk factors and neuroprotection in glaucoma - update. Amsterdam: Kugler Pub; 1996. p. 115–22.

    Google Scholar 

  136. Cioffi GA, Sullivan P. The effect of chronic ischemia on the primate optic nerve. Eur J Ophthalmol. 1999;9 Suppl 1:S34–6.

    PubMed  Google Scholar 

  137. Orgül S, Cioffi GA, Bacon DR, Van Buskirk EM. An endothelin-1-induced model of chronic optic nerve ischemia in rhesus monkeys. J Glaucoma. 1996;5(2):135–8.

    PubMed  Google Scholar 

  138. Oku H, Sugiyama T, Kojima S, Watanabe T, Azuma I. Experimental optic cup enlargement caused by endothelin-1-induced chronic optic nerve head ischemia. Surv Ophthalmol. 1999;44 Suppl 1:S74–84.

    PubMed  Google Scholar 

  139. Ota M, Oku H. Nicardipine modification of endothelin-1 effects on visual evoked potential. Jpn J Ophthalmol. 1997;41(1):38–42.

    PubMed  CAS  Google Scholar 

  140. Nishimura K, Riva CE, Harino S, Reinach P, Cranstoun SD, Mita S. Effects of endothelin-1 on optic nerve head blood flow in cats. J Ocul Pharmacol Ther. 1996;12(1):75–83.

    PubMed  CAS  Google Scholar 

  141. Hayreh SS, Edwards J. Ophthalmic arterial and venous pressures. Effects of acute intracranial hypertension. Br J Ophthalmol. 1971;55(10):649–63.

    PubMed  CAS  Google Scholar 

  142. Hayreh SS. Malignant arterial hypertension. Ophthalmol Clin North Am. 1992;5:445–73.

    Google Scholar 

  143. Hayreh SS. Duke-Elder Lecture: Systemic arterial blood pressure and the eye. Eye 1996; 10:5–28.

    Google Scholar 

  144. Strandgaard S, Olesen J, Skinhoj E, Lassen NA. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973;1(5852):507–10.

    PubMed  CAS  Google Scholar 

  145. Strandgaard S, Jones JV, MacKenzie ET, Harper AM. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res. 1975;37(2):164–7.

    PubMed  CAS  Google Scholar 

  146. Fitch W, MacKenzie ET, Harper AM. Effects of decreasing arterial blood pressure on cerebral blood flow in the baboon. Influence of the sympathetic nervous system. Circ Res. 1975;37(5):550–7.

    PubMed  CAS  Google Scholar 

  147. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation. 1976;53(4):720–7.

    PubMed  CAS  Google Scholar 

  148. Strandgaard S, MacKenzie ET, Jones JV, Harper AM. Studies on the cerebral circulation of the baboon in acutely induced hypertension. Stroke. 1976;7(3):287–90.

    PubMed  CAS  Google Scholar 

  149. Jones JV, Fitch W, MacKenzie ET, Strandgaard S, Harper AM. Lower limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res. 1976;39(4):555–7.

    PubMed  CAS  Google Scholar 

  150. Bill A, Linder J. Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand. 1976;96(1):114–21.

    PubMed  CAS  Google Scholar 

  151. Edvinsson L, Owman C, Siesjo B. Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow. Brain Res. 1976;117(3):519–23.

    PubMed  CAS  Google Scholar 

  152. Boisvert DP, Jones JV, Harper AM. Cerebral blood flow autoregulation to acutely increasing blood pressure during sympathetic stimulation. Acta Neurol Scand Suppl. 1977;64:46–7.

    PubMed  CAS  Google Scholar 

  153. MacKenzie ET, McGeorge AP, Graham DI, Fitch W, Edvinsson L, Harper AM. Breakthrough of cerebral autoregulation and the sympathetic nervous system. Acta Neurol Scand Suppl. 1977;64:48–9.

    PubMed  CAS  Google Scholar 

  154. Floras JS. Antihypertensive treatment, myocardial infarction, and nocturnal myocardial ischaemia. Lancet. 1988;2(8618):994–6.

    PubMed  CAS  Google Scholar 

  155. Cove DH, Seddon M, Fletcher RF, Dukes DC. Blindness after treatment for malignant hypertension. Br Med J. 1979;2(6184):245–6.

    PubMed  CAS  Google Scholar 

  156. Hulse JA, Taylor DS, Dillon MJ. Blindness and paraplegia in severe childhood hypertension. Lancet. 1979;2(8142):553–6.

    PubMed  CAS  Google Scholar 

  157. Pryor JS, Davies PD, Hamilton DV. Blindness and malignant hypertension. Lancet. 1979;2(8146):803.

    PubMed  CAS  Google Scholar 

  158. Wetherill JH. Blindness after treatment for malignant hypertension. Br Med J. 1979;2(6189):550.

    PubMed  CAS  Google Scholar 

  159. Taylor D, Ramsay J, Day S, Dillon M. Infarction of the optic nerve head in children with accelerated hypertension. Br J Ophthalmol. 1981;65(3):153–60.

    PubMed  CAS  Google Scholar 

  160. Alderman MH, Ooi WL, Madhavan S, Cohen H. Treatment-induced blood pressure reduction and the risk of myocardial infarction. JAMA. 1989;262(7):920–4.

    PubMed  CAS  Google Scholar 

  161. Farnett L, Mulrow CD, Linn WD, Lucey CR, Tuley MR. The J-curve phenomenon and the treatment of hypertension. Is there a point beyond which pressure reduction is dangerous? JAMA. 1991;265(4):489–95.

    PubMed  CAS  Google Scholar 

  162. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603–24.

    PubMed  CAS  Google Scholar 

  163. Hayreh SS, Podhajsky P, Zimmerman MB. Role of nocturnal arterial hypotension in optic nerve head ischemic disorders. Ophthalmologica. 1999;213(2):76–96.

    PubMed  CAS  Google Scholar 

  164. Hayreh SS. Vascular factors in the pathogenesis of glaucomatous optic neuropathy. In: Drance SM, editor. International symposium on glaucoma, ocular blood flow, and drug treatment, 1990, Seville, Spain. Baltimore: Williams & Wilkins; 1992. p. 33–41.

    Google Scholar 

  165. Hayreh SS. Acute ischemic disorders of the optic nerve: pathogenesis, clinical manifestations, and management. Ophthalmol Clin North Am. 1996;9:407–42.

    Google Scholar 

  166. Hayreh SS. The role of age and cardiovascular disease in glaucomatous optic neuropathy. Surv Ophthalmol. 1999;43 Suppl 1:S27–42.

    PubMed  Google Scholar 

  167. Hayreh SS. Anterior ischemic optic neuropathy. VIII. Clinical features and pathogenesis of post-hemorrhagic amaurosis. Ophthalmology. 1987;94(11):1488–502.

    PubMed  CAS  Google Scholar 

  168. Béchetoille A, Bresson-Dumont H. Diurnal and nocturnal blood pressure drops in patients with focal ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol. 1994;232(11):675–9.

    PubMed  Google Scholar 

  169. Graham SL, Drance SM, Wijsman K, Douglas GR, Mikelberg FS. Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip. Ophthalmology. 1995;102(1):61–9.

    PubMed  CAS  Google Scholar 

  170. Bresson-Dumont H, Bechetoille A. Rôle de la tension artérielle dans l’évolutivité des lésions glaucomateuses. [Role of arterial blood pressure in the development of glaucomatous lesions]. J Fr Ophtalmol. 1996;19(6–7):435–42.

    PubMed  CAS  Google Scholar 

  171. Meyer JH, Brandi-Dohrn J, Funk J. Twenty four hour blood pressure monitoring in normal tension glaucoma. Br J Ophthalmol. 1996;80(10):864–7.

    PubMed  CAS  Google Scholar 

  172. Detry M, Boschi A, Ellinghaus G, De Plaen JF. Simulta­neous 24-hour monitoring of intraocular pressure and ­arterial blood pressure in patients with progressive and non-progressive primary open-angle glaucoma. Eur J Ophthalmol. 1996;6(3):273–8.

    PubMed  CAS  Google Scholar 

  173. Hayreh SS. Anterior ischaemic optic neuropathy. I. Terminology and pathogenesis. Br J Ophthalmol. 1974;58(12):955–63.

    PubMed  CAS  Google Scholar 

  174. Hayreh SS. Anterior ischemic optic neuropathy. Arch Neurol. 1981;38(11):675–8.

    PubMed  CAS  Google Scholar 

  175. Phelps CD, Corbett JJ. Migraine and low-tension glaucoma. A case-control study. Invest Ophthalmol Vis Sci. 1985;26(8):1105–8.

    PubMed  CAS  Google Scholar 

  176. Gasser P, Flammer J, Guthauser U, Niesel P. Bedeutung des vasospastischen syndroms in der Augenheilkunde. Klin Monatsbl Augenheilkd. 1986;188:398–9.

    Google Scholar 

  177. Gasser P, Flammer J. Influence of vasospasm on visual function. Doc Ophthalmol. 1987;66(1):3–18.

    PubMed  CAS  Google Scholar 

  178. Guthauser U, Flammer J, Mahler F. The relationship between digital and ocular vasospasm. Graefes Arch Clin Exp Ophthalmol. 1988;226(3):224–6.

    PubMed  CAS  Google Scholar 

  179. Drance SM, Douglas GR, Wijsman K, Schulzer M, Britton RJ. Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmol. 1988;105(1):35–9.

    PubMed  CAS  Google Scholar 

  180. Lewis RA, Vijayan N, Watson C, Keltner J, Johnson CA. Visual field loss in migraine. Ophthalmology. 1989;96(3):321–6.

    PubMed  CAS  Google Scholar 

  181. Gasser P, Flammer J, Guthauser U, Mahler F. Do vasospasms provoke ocular diseases? Angiology. 1990;41(3):213–20.

    PubMed  CAS  Google Scholar 

  182. Wang L, Cioffi GA, Van Buskirk EM, Zhao D-Y, Bacon DR. Comparison of optic nerve blood flow measured with laser Doppler flowmetry and microspheres. Invest Ophthalmol Vis Sci. 1999;47(4 Suppl):S276.

    Google Scholar 

  183. Harino S, Riva CE, Petrig BL. Intravenous nicardipine in cats increases optic nerve head but not retinal blood flow. Invest Ophthalmol Vis Sci. 1992;33(10):2885–90.

    PubMed  CAS  Google Scholar 

  184. Yu DY, Alder VA, Su EN, Cringle SJ. Relaxation effects of diltiazem, verapamil, and tolazoline on isolated cat ophthalmociliary artery. Exp Eye Res. 1992;55(5):757–66.

    PubMed  CAS  Google Scholar 

  185. Kitazawa Y, Shirai H, Go FJ. The effect of Ca2+-antagonist on visual field in low-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1989;227(5):408–12.

    PubMed  CAS  Google Scholar 

  186. Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol. 1993;115(5):608–13.

    PubMed  CAS  Google Scholar 

  187. Gaspar AZ, Flammer J, Hendrickson P. Influence of nifedipine on the visual fields of patients with optic-nerve-head diseases. Eur J Ophthalmol. 1994;4(1):24–8.

    PubMed  CAS  Google Scholar 

  188. Gaspar AZ, Gasser P, Flammer J. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica. 1995;209(1):11–3.

    PubMed  CAS  Google Scholar 

  189. Bose S, Piltz JR, Breton ME. Nimodipine, a centrally active calcium antagonist, exerts a beneficial effect on contrast sensitivity in patients with normal-tension glaucoma and in control subjects. Ophthalmology. 1995;102(8):1236–41.

    PubMed  CAS  Google Scholar 

  190. Sawada A, Kitazawa Y, Yamamoto T, Okabe I, Ichien K. Prevention of visual field defect progression with brovincamine in eyes with normal-tension glaucoma. Oph­thalmology. 1996;103(2):283–8.

    PubMed  CAS  Google Scholar 

  191. Kanellopoulos AJ, Erickson KA, Netland PA. Systemic calcium channel blockers and glaucoma. J Glaucoma. 1996;5(5):357–62.

    PubMed  CAS  Google Scholar 

  192. Piltz JR, Bose S, Lanchoney D. The effect of nimodipine, a centrally active calcium antagonist, on visual function and macular blood flow in patients with normal-tension ­glaucoma and control subjects. J Glaucoma. 1996;7:336–42.

    Google Scholar 

  193. Hayreh SS. Evaluation of optic nerve head circulation: review of the methods used. J Glaucoma. 1997;6(5):319–30.

    PubMed  CAS  Google Scholar 

  194. Lumme P, Tuulonen A, Airaksinen PJ, Alanko HI. Neuroretinal rim area in low tension glaucoma: effect of nifedipine and acetazolamide compared to no treatment. Acta Ophthalmol Copenh. 1991;69(3):293–8.

    PubMed  CAS  Google Scholar 

  195. Liu S, Araujo SV, Spaeth GL, Katz LJ, Smith M. Lack of effect of calcium channel blockers on open-angle glaucoma. J Glaucoma. 1996;5(3):187–90.

    PubMed  CAS  Google Scholar 

  196. Harris A, Evans DW, Cantor LB, Martin B. Hemodynamic and visual function effects of oral nifedipine in patients with normal-tension glaucoma. Am J Ophthalmol. 1997;124(3):296–302.

    PubMed  CAS  Google Scholar 

  197. Furberg CD, Psaty BM, Meyer JV. Nifedipine: dose-related increase in mortality in patients with coronary heart disease. Circulation. 1995;92(5):1326–31.

    PubMed  CAS  Google Scholar 

  198. Chobanian AV. Calcium channel blockers. Lessons learned from MIDAS and other clinical trials. JAMA. 1996;276(10):829–30.

    PubMed  CAS  Google Scholar 

  199. Psaty BM, Heckbert SR, Koepsell TD, Siscovick DS, Raghunathan TE, Weiss NS, et al. The risk of myocardial infarction associated with antihypertensive drug therapies. JAMA. 1995;274(8):620–5.

    PubMed  CAS  Google Scholar 

  200. Borhani NO, Mercuri M, Borhani PA, Buckalew VM, Canossa-Terris M, Carr AA, et al. Final outcome results of the Multicenter Isradipine Diuretic Atherosclerosis Study (MIDAS). A randomized controlled trial. JAMA. 1996;276(10):785–91.

    PubMed  CAS  Google Scholar 

  201. Wagenknecht LE, Furberg CD, Hammon JW, Legault C, Troost BT. Surgical bleeding: unexpected effect of a ­calcium antagonist. BMJ. 1995;310(6982):776–7.

    PubMed  CAS  Google Scholar 

  202. Kario K, Imiya M, Ohta Y, Shimada K. Gastrointestinal bleeding induced by amlodipine. J Hum Hypertens. 1995;9(3):206–7.

    PubMed  CAS  Google Scholar 

  203. Pahor M, Guralnik JM, Furberg CD, Carbonin P, Havlik R. Risk of gastrointestinal haemorrhage with calcium antagonists in hypertensive persons over 67 years old. Lancet. 1996;347(9008):1061–5.

    PubMed  CAS  Google Scholar 

  204. Pahor M, Guralnik JM, Salive ME, Corti MC, Carbonin P, Havlik RJ. Do calcium channel blockers increase the risk of cancer? Am J Hypertens. 1996;9(7):695–9.

    PubMed  CAS  Google Scholar 

  205. Daling JR. Calcium channel blockers and cancer: is an association biologically plausible? Am J Hypertens. 1996;9(7):713–4.

    PubMed  CAS  Google Scholar 

  206. Friedland S, Kaplan S, Lahav M, Shapiro A. Proptosis and periorbital edema due to diltiazem treatment. Arch Ophthalmol. 1993;111(8):1027–8.

    PubMed  CAS  Google Scholar 

  207. Galin MA, McIvor JW, Magruder GB. Influence of position on intraocular pressure. Am J Ophthalmol. 1963;55:720–3.

    PubMed  CAS  Google Scholar 

  208. Pathak A, Raoul V, Montastruc JL, Senard JM. Adverse drug reactions related to drugs used in orthostatic ­hypotension: a prospective and systematic pharmacovigilance study in France. Eur J Clin Pharmacol. 2005;61(5–6):471–4.

    PubMed  CAS  Google Scholar 

  209. Armaly MF, Salamoun SG. Schiotz and applanation tonometry. Arch Ophthalmol. 1963;70:603–9.

    PubMed  CAS  Google Scholar 

  210. Anderson DR, Grant WM. The influence of position on intraocular pressure. Invest Ophthalmol. 1973;12(3):204–12.

    PubMed  CAS  Google Scholar 

  211. Wüthrich UW. Postural change and intraocular pressure in glaucomatous eyes. Br J Ophthalmol. 1976;60(2):111–4.

    PubMed  Google Scholar 

  212. Tsukahara S, Sasaki T. Postural change of IOP in normal persons and in patients with primary wide open-angle glaucoma and low-tension glaucoma. Br J Ophthalmol. 1984;68(6):389–92.

    PubMed  CAS  Google Scholar 

  213. Kothe AC. The effect of posture on intraocular pressure and pulsatile ocular blood flow in normal and glaucomatous eyes. Surv Ophthalmol. 1994;38(Suppl):S191–7.

    PubMed  Google Scholar 

  214. Zeimer RC. Circadian variations in intraocular pressure. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. 2nd ed. St. Louis: Mosby; 1996. p. 429–45.

    Google Scholar 

  215. Frampton P, Da Rin D, Brown B. Diurnal variation of intraocular pressure and the overriding effects of sleep. Am J Optom Physiol Opt. 1987;64(1):54–61.

    PubMed  CAS  Google Scholar 

  216. Brown B, Morris P, Muller C, Brady A, Swann PG. Fluctuations in intra-ocular pressure with sleep: I. Time course of IOP increase after the onset of sleep. Ophthalmic Physiol Opt. 1988;8(3):246–8.

    PubMed  CAS  Google Scholar 

  217. Wildsoet C, Eyeson-Annan M, Brown B, Swann PG, Fletcher T. Investigation of parameters influencing intraocular pressure increases during sleep. Ophthalmic Physiol Opt. 1993;13(4):357–65.

    PubMed  CAS  Google Scholar 

  218. Buguet A, Py P, Romanet JP. 24-hour (nyctohemeral) and sleep-related variations of intraocular pressure in healthy white individuals. Am J Ophthalmol. 1994;117(3):342–7.

    PubMed  CAS  Google Scholar 

  219. Brubaker RF. Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci. 1991;32(13):3145–66.

    PubMed  CAS  Google Scholar 

  220. Hayreh SS, Podhajsky P, Zimmerman MB. Beta-blocker eyedrops and nocturnal arterial hypotension. Am J Ophthalmol. 1999;128(3):301–9.

    PubMed  CAS  Google Scholar 

  221. Klaver JH, Greve EL, Goslinga H, Geijssen HC, Heuvelmans JH. Blood and plasma viscosity measurements in patients with glaucoma. Br J Ophthalmol. 1985;69(10):765–70.

    PubMed  CAS  Google Scholar 

  222. Foulds WS. 50th Bowman lecture. ‘Blood is thicker than water’. Some haemorheological aspects of ocular disease. Eye. 1987;1(Pt 3):343–63.

    PubMed  Google Scholar 

  223. Trope GE, Salinas RG, Glynn M. Blood viscosity in ­primary open-angle glaucoma. Can J Ophthalmol. 1987;22(4):202–4.

    PubMed  CAS  Google Scholar 

  224. Carter CJ, Brooks DE, Doyle DL, Drance SM. Investigations into a vascular etiology for low-tension glaucoma. Oph­thalmology. 1990;97(1):49–55.

    PubMed  CAS  Google Scholar 

  225. Weinreb RN. Blood rheology and glaucoma. J Glaucoma. 1993;2:153–4.

    Google Scholar 

  226. O’Brien C, Butt Z, Ludlam C, Detkova P. Activation of the coagulation cascade in untreated primary open-angle glaucoma. Ophthalmology. 1997;104(4):725–9; discussion 9–30.

    PubMed  Google Scholar 

  227. Donati G, Pournaras CJ, Munoz JL, Poitry S, Poitry-Yamate CL, Tsacopoulos M. Nitric oxide controls arteriolar tone in the retina of the miniature pig. Invest Ophthalmol Vis Sci. 1995;36(11):2228–37.

    PubMed  CAS  Google Scholar 

  228. Kondo M, Wang L, Bill A. The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats. Acta Ophthalmol Scand. 1997;75(3):232–5.

    PubMed  CAS  Google Scholar 

  229. Ferrari-Dileo G, Davis EB, Anderson DR. Glaucoma, capillaries and pericytes. 3. Peptide hormone binding and influence on pericytes. Ophthalmologica. 1996;210(5):269–75.

    PubMed  CAS  Google Scholar 

  230. Zschauer AO, Davis EB, Anderson DR. Glaucoma, ­capillaries and pericytes. 4. Beta-adrenergic activation of cultured retinal pericytes. Ophthalmologica. 1996;210(5):276–9.

    PubMed  CAS  Google Scholar 

  231. Orgül S, Bacon DR, Van Buskirk EM, Cioffi GA. Optic nerve vasomotor effects of topical apraclonidine hydrochloride. Br J Ophthalmol. 1996;80(1):82–4.

    PubMed  Google Scholar 

  232. Bhandari A, Cioffi GA, Van Buskirk EM, Orgul S, Wang L. Effect of brimonidine on optic nerve blood flow in rabbits. Am J Ophthalmol. 1999;128(5):601–5.

    PubMed  CAS  Google Scholar 

  233. Tamaki Y, Araie M, Tomita K, Nagahara M. Effect of topical betaxolol on tissue circulation in the human optic nerve head. J Ocul Pharmacol Ther. 1999;15(4):313–21.

    PubMed  CAS  Google Scholar 

  234. Bito LZ. Impact of intraocular pressure on venous outflow from the globe: a hypothesis regarding IOP-dependent vascular damage in normal-tension and hypertensive glaucoma. J Glaucoma. 1996;5(2):127–34.

    PubMed  CAS  Google Scholar 

  235. Hayreh SS, Jonas JB. Optic disk and retinal nerve fiber layer damage after transient central retinal artery occlusion: an experimental study in rhesus monkeys. Am J Ophthalmol. 2000;129(6):786–95.

    PubMed  CAS  Google Scholar 

  236. Hayreh SS, Zimmerman MB, Kimura A, Sanon A. Central retinal artery occlusion. Retinal survival time. Exp Eye Res. 2004;78:723–36.

    PubMed  CAS  Google Scholar 

  237. Cioffi GA, Van Buskirk ME. Vasculature of the anterior optic nerve and peripapillary choroid. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. 2nd ed. St Louis: Mosby; 1996. p. 177–88.

    Google Scholar 

  238. Schoute GJ. Vena Vorticosa im hinteren Bulbustheile. Von Albrecht Graefe’s Arch Ophthalmol. 1898;46:357–9.

    Google Scholar 

  239. Coats G. On the pathology of chorio-vaginal (posterior vortex) veins. Ophthalmol Rev. 1906;25:99–112.

    Google Scholar 

  240. Duke-Elder S. System of ophthalmology. 2nd ed. London: Kimpton; 1961. p. 351, 8.

    Google Scholar 

  241. Hayreh SS. Physiological anatomy of the choroidal vascular bed. Int Ophthalmol. 1983;6(2):85–93.

    PubMed  CAS  Google Scholar 

  242. Hayreh SS. Anatomy and physiology of the optic nerve head. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:OP240–54.

    PubMed  CAS  Google Scholar 

  243. Hayreh SS, Hayreh MS. Hemi-central retinal vein occulsion. Pathogenesis, clinical features, and natural history. Arch Ophthalmol. 1980;98(9):1600–9.

    PubMed  CAS  Google Scholar 

  244. Hayreh SS, March W, Phelps CD. Ocular hypotony following retinal vein occlusion. Arch Ophthalmol. 1978;96(5):827–33.

    PubMed  CAS  Google Scholar 

  245. Hayreh SS, Zimmerman MB, Beri M, Podhajsky P. Intraocular pressure abnormalities associated with central and hemicentral retinal vein occlusion. Ophthalmology. 2004;111(1):133–41.

    PubMed  Google Scholar 

  246. Hayreh SS, Pe’er J, Zimmerman MB. Morphologic changes in chronic high-pressure experimental glaucoma in rhesus monkeys. J Glaucoma. 1999;8(1):56–71.

    PubMed  CAS  Google Scholar 

  247. Hayreh SS. Inter-individual variation in blood supply of the optic nerve head. Its importance in various ischemic disorders of the optic nerve head, and glaucoma, low-tension glaucoma and allied disorders. Doc Ophthalmol. 1985;59(3):217–46.

    PubMed  CAS  Google Scholar 

  248. Hayreh SS. In vivo choroidal circulation and its watershed zones. Eye. 1990;4(Pt 2):273–89.

    PubMed  Google Scholar 

  249. Hayreh SS. Pathogenesis of visual field defects. Role of the ciliary circulation. Br J Ophthalmol. 1970;54(5):289–311.

    PubMed  CAS  Google Scholar 

  250. Hayreh SS. Optic disc changes in glaucoma. Br J Ophthalmol. 1972;56(3):175–85.

    PubMed  CAS  Google Scholar 

  251. Hayreh SS. Colour and fluorescence of the optic disc. Ophthalmologica. 1972;165(2):100–8.

    PubMed  CAS  Google Scholar 

  252. Hayreh SS. Anterior ischaemic optic neuropathy. II. Fundus on ophthalmoscopy and fluorescein angiography. Br J Ophthalmol. 1974;58(12):964–80.

    PubMed  CAS  Google Scholar 

  253. Hayreh SS. The choriocapillaris. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1974;192(3):165–79.

    PubMed  CAS  Google Scholar 

  254. Hayreh SS. Submacular choroidal vascular pattern. Experimental fluorescein fundus angiographic studies. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1974;192(3):181–96.

    PubMed  CAS  Google Scholar 

  255. Hayreh SS. The long posterior ciliary arteries. An experimental study. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1974;192(3):197–213.

    PubMed  CAS  Google Scholar 

  256. Hayreh SS. Segmental nature of the choroidal vasculature. Br J Ophthalmol. 1975;59(11):631–48.

    PubMed  CAS  Google Scholar 

  257. Hayreh SS. Anterior ischemic optic neuropathy. New York: Springer; 1975.

    Google Scholar 

  258. Hayreh SS. In: Bernstein EF, editor. Amaurosis fugax. New York: Springer; 1988. p. 93–113.

    Google Scholar 

  259. Sato Y, Tomita G, Onda E, Goto Y, Oguri A, Kitazawa Y. Association between watershed zone and visual field defect in normal tension glaucoma. Jpn J Ophthalmol. 2000;44(1):39–45.

    PubMed  CAS  Google Scholar 

  260. Hayreh SS, Joos KM, Podhajsky PA, Long CR. Systemic diseases associated with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1994;118(6):766–80.

    PubMed  CAS  Google Scholar 

  261. Anderson DR. Glaucoma: the damage caused by pressure. XLVI Edward Jackson memorial lecture. Am J Ophthalmol. 1989;108(5):485–95.

    PubMed  CAS  Google Scholar 

  262. Hayreh SS. Progress in the understanding of the vascular etiology of glaucoma. Curr Opin Ophthalmol. 1994;5(11):26–35.

    Google Scholar 

  263. Hayreh SS. Blood supply of the optic nerve head in health and disease. In: Lambrou GN, Greve EL, editors. Ocular blood flow in glaucoma: means, methods and measurements. Amstelveen: Kugler & Ghedini; 1989. p. 3–54.

    Google Scholar 

Download references

Acknowledgement

A part of this review contains material from my previous papers on the subject [1, 2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohan Singh Hayreh .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayreh, S.S. (2011). Factors Influencing the Optic Nerve Head Blood Flow. In: Ischemic Optic Neuropathies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11852-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11852-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11849-4

  • Online ISBN: 978-3-642-11852-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics