Skip to main content

Efficient Algorithms to Monitor Continuous Constrained k Nearest Neighbor Queries

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5981))

Included in the following conference series:

Abstract

Continuous monitoring of spatial queries has received significant research attention in the past few years. In this paper, we propose two efficient algorithms for the continuous monitoring of the constrained k nearest neighbor (kNN) queries. In contrast to the conventional k nearest neighbors (kNN) queries, a constrained kNN query considers only the objects that lie within a region specified by some user defined constraints (e.g., a polygon). Similar to the previous works, we also use grid-based data structure and propose two novel grid access methods. Our proposed algorithms are based on these access methods and guarantee that the number of cells that are accessed to compute the constrained kNNs is minimal. Extensive experiments demonstrate that our algorithms are several times faster than the previous algorithm and use considerably less memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: SIGMOD Conference, pp. 634–645 (2005)

    Google Scholar 

  2. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE, pp. 631–642 (2005)

    Google Scholar 

  3. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654 (2005)

    Google Scholar 

  4. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Multi-guarded safe zone: An effective technique to monitor moving circular range queries. To appear in ICDE (2010)

    Google Scholar 

  5. Xia, T., Zhang, D.: Continuous reverse nearest neighbor monitoring. In: ICDE, p. 77 (2006)

    Google Scholar 

  6. Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An efficient technique to continuously monitoring reverse knn. VLDB 2(1), 1138–1149 (2009)

    Google Scholar 

  7. Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi, A.E.: Constrained nearest neighbor queries. In: SSTD, pp. 257–278 (2001)

    Google Scholar 

  8. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: Continuous reverse k-nearest-neighbor monitoring. In: MDM, pp. 132–139 (2008)

    Google Scholar 

  9. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–57 (1984)

    Google Scholar 

  10. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: SSD, pp. 83–95 (1995)

    Google Scholar 

  11. Gao, Y., Chen, G., Li, Q., Li, C., Chen, C.: Constrained k-nearest neighbor query processing over moving object trajectories. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947, pp. 635–643. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD Conference, pp. 623–634 (2004)

    Google Scholar 

  13. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: SIGMOD Conference, pp. 443–454 (2003)

    Google Scholar 

  14. Wu, W., Tan, K.L.: isee: Efficient continuous k-nearest-neighbor monitoring over moving objects. In: SSDBM, p. 36 (2007)

    Google Scholar 

  15. Cheema, M.A.: Circulartrip and arctrip: effective grid access methods for continuous spatial queries. UNSW Masters Thesis (2007), http://handle.unsw.edu.au/1959.4/40512

  16. Cheema, M.A., Yuan, Y., Lin, X.: Circulartrip: An effective algorithm for continuous nn queries. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 863–869. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hasan, M., Cheema, M.A., Qu, W., Lin, X. (2010). Efficient Algorithms to Monitor Continuous Constrained k Nearest Neighbor Queries. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds) Database Systems for Advanced Applications. DASFAA 2010. Lecture Notes in Computer Science, vol 5981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12026-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12026-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12025-1

  • Online ISBN: 978-3-642-12026-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics