Skip to main content

Development of the Retina

  • Chapter
  • First Online:
Pediatric Retina
  • 2265 Accesses

Abstract

Appreciating the mechanisms responsible for normal retinal development is critical to understanding disease processes affecting the pediatric retina. Remarkably, the retina develops over a relatively long period of time beginning from the early gestational period through the first years of life. Consider, for example, that the human macula, which although first evident at a gestational age of 11 weeks, is still very immature even at birth [1]. The relative long window of retinal development is a vulnerability leaving this intricate tissue susceptible to specific genetic and environmental insults over an extended period. Furthermore, many of the central concepts in developmental biology were first discovered, and continue to be uncovered by studies of retinal development in various systems ranging from drosophila to man. Thus, the study of retinal development continues to provide important insights not only into the pediatric retina, the main subject of this book, but also into the mysteries of developmental embryology, vertebrate evolution, and disease pathophysiology. The following pages are meant to provide a foundation to the subject rather than a compendium of genes and syndromes. The emphasis taken, therefore, is to encourage the reader to understand the origin of the current concepts that exist, most importantly to appreciate that we are only at the tip of the iceberg with most important discoveries and breakthroughs yet to be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramov, I., Gordon, J., Hendrickson, A., Hainline, L., Dobson, V., LaBossiere, E.: The retina of the newborn human infant. Science 217, 265–267 (1982)

    Article  CAS  PubMed  Google Scholar 

  2. Glass, A.S., Dahm, R.: The zebrafish as a model organism for eye development. Ophthalmic. Res. 36, 4–24 (2004)

    Article  PubMed  Google Scholar 

  3. Malicki, J., Jo, H., Wei, X., Hsiung, M., Pujic, Z.: Analysis of gene function in the zebrafish retina. Methods 28, 427–438 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Malicki, J.: Development of the retina. Methods Cell. Biol. 59, 273–299 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Felsenfeld, A.L.: Defining the boundaries of zebrafish developmental genetics. Nat. Genet. 14, 258–263 (1996)

    Article  CAS  PubMed  Google Scholar 

  6. Moritz, O.L., Tam, B.M., Papermaster, D.S., Nakayama, T.: A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern. J. Biol. Chem. 276, 28242–28251 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Tam, B.M., Moritz, O.L., Hurd, L.B., Papermaster, D.S.: Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. J. Cell. Biol. 151, 1369–1380 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Knox, B.E., Schlueter, C., Sanger, B.M., Green, C.B., Besharse, J.C.: Transgene expression in Xenopus rods. FEBS. Lett. 423, 117–121 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. Jin, S., McKee, T.D., Oprian, D.D.: An improved rhodopsin/EGFP fusion protein for use in the generation of transgenic Xenopus laevis. FEBS. Lett. 542, 142–146 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Hutcheson, D.A., Vetter, M.L.: Transgenic approaches to retinal development and function in Xenopus laevis. Methods 28, 402–410 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Hirsch, N., Zimmerman, L.B., Grainger, R.M.: Xenopus, the next generation: X. tropicalis genetics and genomics. Dev. Dyn. 225, 422–433 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Hirsch, N., Zimmerman, L.B., Gray, J., Chae, J., Curran, K.L., Fisher, M., Ogino, H., Grainger, R.M.: Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Dev. Dyn. 225, 522–535 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Ogura, T.: In vivo electroporation: a new frontier for gene delivery and embryology. Differentiation 70, 163–171 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Beck, C.W., Slack, J.M.: An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol. 2, 1029.1021–1209.1025 (2001)

    Google Scholar 

  15. Sparrow, D.B., Latinkic, B., Mohun, T.J.: A simplified method of generating transgenic Xenopus. Nucelic Acids Res. 28, E12 (2000)

    Article  CAS  Google Scholar 

  16. Ishibashi, S., Kroll, K.L., Amaya, E.: A method for generating transgenic frog embryos. In: Meth. Mol. Biol., 461, 447–466 (2008)

    Google Scholar 

  17. Slack, J.M.: Developmental biology. High hops of transgenic frogs. Nature 383, 765–766 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. Land, M.F., Fernald, R.D.: The evolution of eyes. Ann. Rev. Neurosci. 15, 1–29 (1992)

    Article  CAS  PubMed  Google Scholar 

  19. Salvini-Plawen, L., Mayr, E.: In: Evolutionary biology. Hecht, M.K., Steere, W.C., Wallace, B. (eds.) Plenum, New York 10, 207-263 (1977)

    Google Scholar 

  20. Halder, G., Callaerts, P., Gehring, W.J.: New perspectives on eye evolution. Curr. Opin. Genet. Dev. 5, 602–609 (1995)

    Article  CAS  PubMed  Google Scholar 

  21. Gehring, W.J.: The genetic control of eye development and its implications for the evolution of the various eye-types. Int. J. Dev. Biol. 46, 65–73 (2002)

    PubMed  Google Scholar 

  22. Gehring, W.J.: Historical perspective on the development and evolution of eyes and photoreceptors. Int. J. Dev. Biol. 48, 707–717 (2004)

    Article  PubMed  Google Scholar 

  23. Treisman, J.E.: How to make an eye. Development 131, 3823–3827 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Land, M.F.: Compound eyes: old and new optical mechanisms. Nature 287, 681–686 (1980)

    Article  CAS  PubMed  Google Scholar 

  25. Saari, J.C.: Retinoids in photosensitive systems. In: Sporn, M.B., Roberts, A.B., Goodman, D.S. (eds.) The retinoids, pp. 351–385. Raven, New York (1994)

    Google Scholar 

  26. Saari, J.C.: Biochemistry of visual pigment regeneration: the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci 41, 337–348 (2000)

    CAS  PubMed  Google Scholar 

  27. McBee, J.K., Palczewski, K., Baehr, W., Pepperberg, D.R.: Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog. Retin. Eye Res. 20, 469–529 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Fernandez, F.: Interphotoreceptor retinoid-binding protein–an old gene for new eyes. Vision Res. 43, 3021–3036 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez-Fernandez, F.: Evolution of the visual cycle: the role of retinoid-binding proteins. J. Endocrinol. 175, 75–88 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Hara, R., Hara, T., Tokunaga, F., Yoshizawa, T.: Photochemistry of retinochrome. Photochem. Photobiol. 33, 883–891 (1981)

    Article  CAS  PubMed  Google Scholar 

  31. Hara, T., Hara, R.: Cephalopod retinochrome. Methods Enzymol. 81, 827–833 (1982)

    Article  CAS  PubMed  Google Scholar 

  32. Messenger, J.B.: Comparative physiology and evolution of vision in invertebrates. Springer, Berlin (1981)

    Google Scholar 

  33. Ozaki, K., Terakita, A., Ozaki, M., Hara, R., Hara, T., Hara-Nishimura, I., Mori, H., Nishimura, M.: Molecular characterization and functional expression of squid retinal-binding protein. A novel species of hydrophobic ligand-binding protein. J. Biol. Chem. 269, 3838–3845 (1994)

    CAS  PubMed  Google Scholar 

  34. Ozaki, K., Terakita, A., Hara, R., Hara, T.: Isolation and characterization of a retinal-binding protein from the squid retina. Vision Res. 27, 1057–1070 (1987)

    Article  CAS  PubMed  Google Scholar 

  35. Terakita, A., Hara, R., Hara, T.: Retinal-binding protein as a shuttle for retinal in the rhodopsin-retinochrome system of the squid visual cells. Vision Res. 29, 639–652 (1989)

    Article  CAS  PubMed  Google Scholar 

  36. Lamb, T.D., Pugh, E.N.: Dark adaptation and the retinoid cycle of vision. Prog. Retina. Eye Res. 23, 307–380 (2004)

    Article  CAS  Google Scholar 

  37. Mata, N., Radu, R., Clemmons, R., Travis, G.: Isomerization and oxidation of vitamin a in cone-dominant retinas. A novel pathway for visual-pigment regeneration in daylight. Neuron 36, 69–80 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. Kumar, J.P., Moses, K.: Eye specification in Drosophila: perspectives and implications. Semin. Cell Dev. Biol. 12, 469–474 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. Kumar, J.P.: Signalling pathways in Drosophila and vertebrate retinal development. Nat. Rev. Genet. 2, 846–857 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Kumar, J.P., Moses, K.: Expression of evolutionarily conserved eye specification genes during Drosophila embryogenesis. Dev. Genes. Evol. 211, 406–414 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Sander, K., Faessler, P.E.: Introducing the Spemann-Mangold organizer: experiments and insights that generated a keyconcept in developmental biology. Int. J. Dev. Biol. 45, 1–11 (2001)

    CAS  PubMed  Google Scholar 

  42. Hamburger, V.: Hilde Mangold, co-discoverer of the organizer. J. Hist. Biol. 17, 1–11 (1984)

    Article  CAS  PubMed  Google Scholar 

  43. Bouwmeester, T.: The Spemann-Mangold organizer: the control of fate specification and morphogenetic rearrangements during gastrulation in Xenopus. Int. J. Dev. Biol. 45, 251–258 (2001)

    CAS  PubMed  Google Scholar 

  44. De Robertis, E.M., Wessely, O., Oelgeschlager, M., Brizuela, B., Pera, E., Larrain, J., Abreu, J., Bachiller, D.: Molecular mechanisms of cell-cell signaling by the Spemann-Mangold organizer. Int. J. Dev. Biol. 45, 189–197 (2001)

    PubMed  Google Scholar 

  45. Weinstein, D.C., Hemmati-Brivanlou, A.: Neural induction. Annu. Rev. Cell Dev. Biol. 15, 411–433 (1999)

    Article  CAS  PubMed  Google Scholar 

  46. Niehrs, C.: Head in the WNT: the molecular nature of Spemann’s head organizer. Trends Genet. 15, 314–319 (1999)

    Article  CAS  PubMed  Google Scholar 

  47. Streit, A., Stern, C.D.: Neural induction. A bird’s eye view. Trends Genet. 15, 20–24 (1999)

    Article  CAS  PubMed  Google Scholar 

  48. Fini, M.E., Strissel, K.J., West-Mays, J.A.: Perspectives on eye development. Dev. Genet. 20, 175–185 (1997)

    Article  CAS  PubMed  Google Scholar 

  49. Chow, R.L., Lang, R.A.: Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 255–296 (2001)

    Article  CAS  PubMed  Google Scholar 

  50. Saha, M.S., Servetnick, M., Grainger, R.M.: Vertebrate eye development. Curr. Opin. Genet. Dev. 2, 582–588 (1992)

    Article  CAS  PubMed  Google Scholar 

  51. Jarman, A.P.: Developmental genetics: vertebrates and insects see eye to eye. Curr. Biol. 10, R857–R859 (2000)

    Article  CAS  PubMed  Google Scholar 

  52. Rapaport, D.H., Patheal, S.L., Harris, W.A.: Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina. J. Neurobiol. 49, 129–141 (2001)

    Article  CAS  PubMed  Google Scholar 

  53. Harris, W.A., Messersmith, S.L.: Two cellular inductions involved in photoreceptor determination in the Xenopus retina. Neuron 9, 357–372 (1992)

    Article  CAS  PubMed  Google Scholar 

  54. Ohnuma, S., Hopper, S., Wang, K.C., Philpott, A., Harris, W.A.: Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development 129, 2435–2446 (2002)

    CAS  PubMed  Google Scholar 

  55. Wessely, O., De Robertis, E.M.: Neural plate patterning by secreted signals. Neuron 33, 489–491 (2002)

    Article  CAS  PubMed  Google Scholar 

  56. Saha, M.S., Spann, C.L., Grainger, R.M.: Embryonic lens induction: more than meets the optic vesicle. Cell Differ. Dev. 28, 153–171 (1989)

    Article  CAS  PubMed  Google Scholar 

  57. Grainger, R.M., Henry, J.J., Saha, M.S., Servetnick, M.: Recent progress on the mechanisms of embryonic lens formation. Eye 6(Pt 2), 117–122 (1992)

    Article  PubMed  Google Scholar 

  58. Lupo, G., Andreazzoli, M., Gestri, G., Liu, Y., He, R.Q., Barsacchi, G.: Homeobox genes in the genetic control of eye development. Int. J. Dev. Biol. 44, 627–636 (2000)

    CAS  PubMed  Google Scholar 

  59. Servetnick, M., Grainger, R.M.: Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer. Development 112, 177–188 (1991)

    CAS  PubMed  Google Scholar 

  60. Grainger, R.M., Herry, J.J., Henderson, R.A.: Reinvestigation of the role of the optic vesicle in embryonic lens induction. Development 102, 517–526 (1988)

    CAS  PubMed  Google Scholar 

  61. Henry, J.J., Grainger, R.M.: Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis. Dev. Biol. 124, 200–214 (1987)

    Article  CAS  PubMed  Google Scholar 

  62. Spemann, H.: Embryonic development and induction. Yale University, New Haven (1938)

    Google Scholar 

  63. Graham, A.: The origin of dorsoventral patterning of the vertebrate nervous system. Trends Genet. 13, 463–465 (1997)

    Article  CAS  PubMed  Google Scholar 

  64. Chan, A., Lakshminrusimha, S., Heffner, R., Gonzalez-Fernandez, F.: Histogenesis of retinal dysplasia in trisomy 13. Diagn. Pathol. 2, 48 (2007)

    Article  PubMed  Google Scholar 

  65. Roessler, E., Muenke, M.: Midline and laterality defects: left and right meet in the middle. Bioessays 23, 888–900 (2001)

    Article  CAS  PubMed  Google Scholar 

  66. Roessler, E., Muenke, M.: Holoprosencephaly: a paradigm for the complex genetics of brain development. J. Inherit. Metab. Dis. 21, 481–497 (1998)

    Article  CAS  PubMed  Google Scholar 

  67. Wallis, D.E., Muenke, M.: Molecular mechanisms of holoprosencephaly. Mol. Genet. Metab. 68, 126–138 (1999)

    Article  CAS  PubMed  Google Scholar 

  68. Golden, J.A.: Towards a greater understanding of the pathogenesis of holoprosencephaly. Brain Dev. 21, 513–521 (1999)

    Article  CAS  PubMed  Google Scholar 

  69. Muenke, M., Cohen Jr., M.M.: Genetic approaches to understanding brain development: holoprosencephaly as a model. Ment. Retard. Dev. Disabil. Res. Rev. 6, 15–21 (2000)

    Article  CAS  PubMed  Google Scholar 

  70. Yamada, S., Uwabe, C., Fujii, S., Shiota, K.: Phenotypic variability in human embryonic holoprosencephaly in the Kyoto Collection. Birth Defects Res. Part A Clin. Mol. Teratol. 70, 495–508 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. Thakur, S., Singh, R., Pradhan, M., Phadke, S.R.: Spectrum of holoprosencephaly. Indian J. Pediatr. 71, 593–597 (2004)

    Article  PubMed  Google Scholar 

  72. Nanni, L., Schelper, R.L., Muenke, M.T.: Molecular genetics of holoprosencephaly. Front Biosci. 5, D334–D342 (2000)

    Article  CAS  PubMed  Google Scholar 

  73. Johnson, V.P.: Holoprosencephaly: a developmental field defect. Am. J. Med. Genet. 34, 258–264 (1989)

    Article  CAS  PubMed  Google Scholar 

  74. Belloni, E., Muenke, M., Roessler, E., Traverso, G., Siegel-Bartelt, J., Frumkin, A., Mitchell, H.F., Donis-Keller, H., Helms, C., Hing, A.V., et al.: Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat. Genet. 14, 353–356 (1996)

    Article  CAS  PubMed  Google Scholar 

  75. Ahlgren, S.C., Bronner-Fraser, M.: Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr. Biol. 9, 1304–1314 (1999)

    Article  CAS  PubMed  Google Scholar 

  76. Pasquier, L., Dubourg, C., Blayau, M., Lazaro, L., Le Marec, B., David, V., Odent, S.: A new mutation in the six-domain of SIX3 gene causes holoprosencephaly. Eur. J. Hum. Genet. 8, 797–800 (2000)

    Article  CAS  PubMed  Google Scholar 

  77. Wallis, D., Muenke, M.: Mutations in holoprosencephaly. Hum. Mutat. 16, 99–108 (2000)

    Article  CAS  PubMed  Google Scholar 

  78. Schell-Apacik, C., Rivero, M., Knepper, J.L., Roessler, E., Muenke, M., Ming, J.E.: SONIC HEDGEHOG mutations causing human holoprosencephaly impair neural patterning activity. Hum. Genet. 113, 170–177 (2003)

    CAS  PubMed  Google Scholar 

  79. Roessler, E., Muenke, M.: How a Hedgehog might see holoprosencephaly. Hum. Mol. Genet. 12 Spec No 1, R15–R25 (2003)

    Google Scholar 

  80. Ming, J.E., Kaupas, M.E., Roessler, E., Brunner, H.G., Golabi, M., Tekin, M., Stratton, R.F., Sujansky, E., Bale, S.J., Muenke, M.: Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum. Genet. 110, 297–301 (2002)

    Article  CAS  PubMed  Google Scholar 

  81. Kinsman, S.L., Plawner, L.L., Hahn, J.S.: Holoprosencephaly: recent advances and new insights. Curr. Opin. Neurol. 13, 127–132 (2000)

    Article  CAS  PubMed  Google Scholar 

  82. Gripp, K.W., Wotton, D., Edwards, M.C., Roessler, E., Ades, L., Meinecke, P., Richieri-Costa, A., Zackai, E.H., Massague, J., Muenke, M., Elledge, S.J.: Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat. Genet. 25, 205–208 (2000)

    Article  CAS  PubMed  Google Scholar 

  83. Dubourg, C., Lazaro, L., Pasquier, L., Bendavid, C., Blayau, M., Le Duff, F., Durou, M.R., Odent, S., David, V.: Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: Mutation review and genotype-phenotype correlations. Hum. Mutat. 24, 43–51 (2004)

    Article  CAS  PubMed  Google Scholar 

  84. Edison, R., Muenke, M.: The interplay of genetic and environmental factors in craniofacial morphogenesis: holoprosencephaly and the role of cholesterol. Congenit. Anom (Kyoto). 43, 1–21 (2003)

    Article  CAS  Google Scholar 

  85. Cohen Jr., M.M., Shiota, K.: Teratogenesis of holoprosencephaly. Am. J. Med. Genet. 109, 1–15 (2002)

    Article  PubMed  Google Scholar 

  86. Aguilella, C., Dubourg, C., Attia-Sobol, J., Vigneron, J., Blayau, M., Pasquier, L., Lazaro, L., Odent, S., David, V.: Molecular screening of the TGIF gene in holoprosencephaly: identification of two novel mutations. Hum. Genet. 112, 131–134 (2003)

    CAS  PubMed  Google Scholar 

  87. Roessler, E., Belloni, E., Gaudenz, K., Jay, P., Berta, P., Scherer, S.W., Tsui, L.C., Muenke, M.: Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet. 14, 357–360 (1996)

    Article  CAS  PubMed  Google Scholar 

  88. Nybakken, K., Perrimon, N.: Hedgehog signal transduction: recent findings. Curr. Opin. Genet. Dev. 12, 503–511 (2002)

    Article  CAS  PubMed  Google Scholar 

  89. Cooper, M.K., Porter, J.A., Young, K.E., Beachy, P.A.: Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998)

    Article  CAS  PubMed  Google Scholar 

  90. Lanoue, L., Dehart, D.B., Hinsdale, M.E., Maeda, N., Tint, G.S., Sulik, K.K.: Limb, genital, CNS, and facial malformations result from gene/environment-induced cholesterol deficiency: further evidence for a link to sonic hedgehog. Am. J. Med. Genet. 73, 24–31 (1997)

    Article  CAS  PubMed  Google Scholar 

  91. Roessler, E., Belloni, E., Gaudenz, K., Vargas, F., Scherer, S.W., Tsui, L.C., Muenke, M.: Mutations in the C-terminal domain of Sonic Hedgehog cause holoprosencephaly. Hum. Mol. Genet. 6, 1847–1853 (1997)

    Article  CAS  PubMed  Google Scholar 

  92. Weed, M., Mundlos, S., Olsen, B.R.: The role of sonic hedgehog in vertebrate development. Matrix Biol. 16, 53–58 (1997)

    Article  CAS  PubMed  Google Scholar 

  93. Kelley, R.L., Roessler, E., Hennekam, R.C., Feldman, G.L., Kosaki, K., Jones, M.C., Palumbos, J.C., Muenke, M.: Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am. J. Med. Genet. 66, 478–484 (1996)

    Article  CAS  PubMed  Google Scholar 

  94. Gofflot, F., Hars, C., Illien, F., Chevy, F., Wolf, C., Picard, J.J., Roux, C.: Molecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of Hedgehog signaling. Hum. Mol. Genet. 12, 1187–1198 (2003)

    Article  CAS  PubMed  Google Scholar 

  95. Porter, F.D.: Human malformation syndromes due to inborn errors of cholesterol synthesis. Curr. Opin. Pediatr. 15, 607–613 (2003)

    Article  PubMed  Google Scholar 

  96. Kelley, R.I.: Inborn errors of cholesterol biosynthesis. Adv. Pediatr. 47, 1–53 (2000)

    CAS  PubMed  Google Scholar 

  97. Roux, C., Wolf, C., Mulliez, N., Gaoua, W., Cormier, V., Chevy, F., Citadelle, D.: Role of cholesterol in embryonic development. Am. J. Clin. Nutr. 71, 1270S–1279S (2000)

    CAS  PubMed  Google Scholar 

  98. Lee, J.D., Treisman, J.E.: Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr. Biol. 11, 1147–1152 (2001)

    Article  CAS  PubMed  Google Scholar 

  99. Incardona, J.P., Roelink, H.: The role of cholesterol in Shh signaling and teratogen-induced holoprosencephaly. Cell Mol. Life Sci. 57, 1709–1719 (2000)

    Article  CAS  PubMed  Google Scholar 

  100. Lewis, P.M., Dunn, M.P., McMahon, J.A., Logan, M., Martin, J.F., St-Jacques, B., McMahon, A.P.: Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105, 599–612 (2001)

    Article  CAS  PubMed  Google Scholar 

  101. Zeng, X., Goetz, J.A., Suber, L.M., Scott Jr., W.J., Schreiner, C.M., Robbins, D.J.: A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411, 716–720 (2001)

    Article  CAS  PubMed  Google Scholar 

  102. Gritli-Linde, A., Lewis, P., McMahon, A.P., Linde, A.: The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signaling peptides. Dev. Biol. 236, 364–386 (2001)

    Article  CAS  PubMed  Google Scholar 

  103. Goetz, J.A., Suber, L.M., Zeng, X., Robbins, D.J.: Sonic Hedgehog as a mediator of long-range signaling. Bioessays 24, 157–165 (2002)

    Article  CAS  PubMed  Google Scholar 

  104. Pepinsky, R.B., Zeng, C., Wen, D., Rayhorn, P., Baker, D.P., Williams, K.P., Bixler, S.A., Ambrose, C.M., Garber, E.A., Miatkowski, K., et al.: Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998)

    Article  CAS  PubMed  Google Scholar 

  105. Taylor, F.R., Wen, D., Garber, E.A., Carmillo, A.N., Baker, D.P., Arduini, R.M., Williams, K.P., Weinreb, P.H., Rayhorn, P., Hronowski, X., et al.: Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40, 4359–4371 (2001)

    Article  CAS  PubMed  Google Scholar 

  106. Chuang, P.T., Kornberg, T.B.: On the range of hedgehog signaling. Curr. Opin. Genet. Dev. 10, 515–522 (2000)

    Article  CAS  PubMed  Google Scholar 

  107. Incardona, J.P., Gaffield, W., Kapur, R.P., Roelink, H.: The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125, 3553–3562 (1998)

    CAS  PubMed  Google Scholar 

  108. Incardona, J.P., Gaffield, W., Lange, Y., Cooney, A., Pentchev, P.G., Liu, S., Watson, J.A., Kapur, R.P., Roelink, H.: Cyclopamine inhibition of Sonic hedgehog signal transduction is not mediated through effects on cholesterol transport. Dev. Biol. 224, 440–452 (2000)

    Article  CAS  PubMed  Google Scholar 

  109. Hammerschmidt, M., Brook, A., McMahon, A.P.: The world according to hedgehog. Trends Genet. 13, 14–21 (1997)

    Article  CAS  PubMed  Google Scholar 

  110. Johnson, R.L., Scott, M.P.: New players and puzzles in the Hedgehog signaling pathway. Curr. Opin. Genet. Dev. 8, 450–456 (1998)

    Article  CAS  PubMed  Google Scholar 

  111. Traiffort, E., Dubourg, C., Faure, H., Rognan, D., Odent, S., Durou, M.R., David, V., Ruat, M.: Functional characterization of SHH mutations associated with holoprosencephaly. J. Biol. Chem. 279(41), 42889–42897 (2004)

    Article  CAS  PubMed  Google Scholar 

  112. Muenke, M., Gurrieri, F., Bay, C., Yi, D.H., Collins, A.L., Johnson, V.P., Hennekam, R.C., Schaefer, G.B., Weik, L., Lubinsky, M.S., et al.: Linkage of a human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc. Natl. Acad. Sci. USA 91, 8102–8106 (1994)

    Article  CAS  PubMed  Google Scholar 

  113. Ming, J.E., Muenke, M.: Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am. J. Hum. Genet. 71, 1017–1032 (2002)

    Article  CAS  PubMed  Google Scholar 

  114. Li, H., Tierney, C., Wen, L., Wu, J.Y., Rao, Y.: A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 124, 603–615 (1997)

    CAS  PubMed  Google Scholar 

  115. Adelmann, H.B.: Experimental studies on the development of the eye. I. The effect of the removal of median and lateral areas of the anterior end of the urodelan neural plate on the development of the eyes (Triton teniatus and Amblystoma punctatum). J Comp Neurol 54, 249–290 (1929)

    Google Scholar 

  116. Yamamoto, Y., Stock, D.W., Jeffery, W.R.: Hedgehog signalling controls eye degeneration in blind cavefish. Nature 431, 844–847 (2004)

    Article  CAS  PubMed  Google Scholar 

  117. Anderson, R.M., Lawrence, A.R., Stottmann, R.W., Bachiller, D., Klingensmith, J.: Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129, 4975–4987 (2002)

    CAS  PubMed  Google Scholar 

  118. Golden, J.A., Bracilovic, A., McFadden, K.A., Beesley, J.S., Rubenstein, J.L., Grinspan, J.B.: Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. Proc. Natl. Acad. Sci. USA 96, 2439–2444 (1999)

    Article  CAS  PubMed  Google Scholar 

  119. Kalter, H.: Cyclopia produced in a very early retinoic acid experiment. Teratology 46, 207–208 (1992)

    Article  CAS  PubMed  Google Scholar 

  120. Muller, F., Albert, S., Blader, P., Fischer, N., Hallonet, M., Strahle, U.: Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development 127, 3889–3897 (2000)

    CAS  PubMed  Google Scholar 

  121. Nasevicius, A., Ekker, S.C.: Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26, 216–220 (2000)

    Article  CAS  PubMed  Google Scholar 

  122. Sampath, K., Rubinstein, A.L., Cheng, A.M., Liang, J.O., Fekany, K., Solnica-Krezel, L., Korzh, V., Halpern, M.E., Wright, C.V.: Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185–189 (1998)

    Article  CAS  PubMed  Google Scholar 

  123. Gorlin, R.J.: Nevoid basal cell carcinoma (Gorlin) syndrome. Genet. Med. 6, 530–539 (2004)

    Article  PubMed  Google Scholar 

  124. Bale, A.E., Yu, K.P.: The hedgehog pathway and basal cell carcinomas. Hum. Mol. Genet. 10, 757–762 (2001)

    Article  CAS  PubMed  Google Scholar 

  125. Ingham, P.W.: The patched gene in development and cancer. Curr. Opin. Genet. Dev. 8, 88–94 (1998)

    Article  CAS  PubMed  Google Scholar 

  126. Wolter, M., Reifenberger, J., Sommer, C., Ruzicka, T., Reifenberger, G.: Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 57, 2581–2585 (1997)

    CAS  PubMed  Google Scholar 

  127. Chidambaram, A., Dean, M.: Genetics of the nevoid basal cell carcinoma syndrome. Adv. Cancer Res. 70, 49–61 (1996)

    Article  CAS  PubMed  Google Scholar 

  128. Hahn, H., Wicking, C., Zaphiropoulous, P.G., Gailani, M.R., Shanley, S., Chidambaram, A., Vorechovsky, I., Holmberg, E., Unden, A.B., Gillies, S., et al.: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996)

    Article  CAS  PubMed  Google Scholar 

  129. Evans, D.G., Ladusans, E.J., Rimmer, S., Burnell, L.D., Thakker, N., Farndon, P.A.: Complications of the naevoid basal cell carcinoma syndrome: results of a population based study. J. Med. Genet. 30, 460–464 (1993)

    Article  CAS  PubMed  Google Scholar 

  130. Shanley, S., Ratcliffe, J., Hockey, A., Haan, E., Oley, C., Ravine, D., Martin, N., Wicking, C., Chenevix-Trench, G.: Nevoid basal cell carcinoma syndrome: review of 118 affected individuals. Am. J. Med. Genet. 50, 282–290 (1994)

    Article  CAS  PubMed  Google Scholar 

  131. Manners, R.M., Morris, R.J., Francis, P.J., Hatchwell, E.: Microphthalmos in association with Gorlin’s syndrome. Br. J. Ophthalmol. 80, 378 (1996)

    Article  CAS  PubMed  Google Scholar 

  132. Reish, O., Gorlin, R.J., Hordinsky, M., Rest, E.B., Burke, B., Berry, S.A.: Brain anomalies, retardation of mentality and growth, ectodermal dysplasia, skeletal malformations, Hirschsprung disease, ear deformity and deafness, eye hypoplasia, cleft palate, cryptorchidism, and kidney dysplasia/hypoplasia (BRESEK/BRESHECK): new X-linked syndrome? Am. J. Med. Genet. 68, 386–390 (1997)

    Article  CAS  PubMed  Google Scholar 

  133. De Potter, P., Stanescu, D., Caspers-Velu, L., Hofmans, A.: Photo essay: combined hamartoma of the retina and retinal pigment epithelium in Gorlin syndrome. Arch. Ophthalmol. 118, 1004–1005 (2000)

    PubMed  Google Scholar 

  134. Manzi, G., Magli, A., Pignalosa, B., Liguori, G.: The Gorlin-Goltz syndrome: case report. Ophthalmologica 200, 104–106 (1990)

    Article  CAS  PubMed  Google Scholar 

  135. Boutimzine, N., Laghmari, A., Karib, H., Karmane, M., Bencherif, M., Albouzidi, A., Cherkaoui, O., Mohcine, Z.: Gorlin-Goltz phacomatosis: ophthalmological aspects in one case. J. Fr. Ophtalmol. 23, 180–186 (2000)

    CAS  PubMed  Google Scholar 

  136. De Jong, P.T., Bistervels, B., Cosgrove, J., de Grip, G., Leys, A., Goffin, M.: Medullated nerve fibers. A sign of multiple basal cell nevi (Gorlin’s) syndrome. Arch. Ophthalmol. 103, 1833–1836 (1985)

    Article  PubMed  Google Scholar 

  137. Wallace, V.A., Raff, M.C.: A role for Sonic hedgehog in axon-to-astrocyte signalling in the rodent optic nerve. Development 126, 2901–2909 (1999)

    CAS  PubMed  Google Scholar 

  138. Jensen, A.M., Wallace, V.A.: Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124, 363–371 (1997)

    CAS  PubMed  Google Scholar 

  139. Wang, Y.P., Dakubo, G., Howley, P., Campsall, K.D., Mazarolle, C.J., Shiga, S.A., Lewis, P.M., McMahon, A.P., Wallace, V.A.: Development of normal retinal organization depends on Sonic hedgehog signaling from ganglion cells. Nat. Neurosci. 5, 831–832 (2002)

    Article  CAS  PubMed  Google Scholar 

  140. Levine, E.M., Roelink, H., Turner, J., Reh, T.A.: Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J. Neurosci. 17, 6277–6288 (1997)

    CAS  PubMed  Google Scholar 

  141. Dakubo, G.D., Wang, Y.P., Mazerolle, C., Campsall, K., McMahon, A.P., Wallace, V.A.: Retinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development. Development 130, 2967–2980 (2003)

    Article  CAS  PubMed  Google Scholar 

  142. Black, G.C., Mazerolle, C.J., Wang, Y., Campsall, K.D., Petrin, D., Leonard, B.C., Damji, K.F., Evans, D.G., McLeod, D., Wallace, V.A.: Abnormalities of the vitreoretinal interface caused by dysregulated Hedgehog signaling during retinal development. Hum. Mol. Genet. 12, 3269–3276 (2003)

    Article  CAS  PubMed  Google Scholar 

  143. Zurawel, R.H., Allen, C., Wechsler-Reya, R., Scott, M.P., Raffel, C.: Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice. Genes Chromosomes Cancer 28, 77–81 (2000)

    Article  CAS  PubMed  Google Scholar 

  144. Milenkovic, L., Goodrich, L.V., Higgins, K.M., Scott, M.P.: Mouse patched1 controls body size determination and limb patterning. Development 126, 4431–4440 (1999)

    CAS  PubMed  Google Scholar 

  145. Goodrich, L.V., Milenkovic, L., Higgins, K.M., Scott, M.P.: Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997)

    Article  CAS  PubMed  Google Scholar 

  146. Goodrich, L.V., Johnson, R.L., Milenkovic, L., McMahon, J.A., Scott, M.P.: Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301–312 (1996)

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, X.M., Yang, X.J.: Temporal and spatial effects of Sonic hedgehog signaling in chick eye morphogenesis. Dev. Biol. 233, 271–290 (2001)

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, X.M., Yang, X.J.: Regulation of retinal ganglion cell production by Sonic hedgehog. Development 128, 943–957 (2001)

    CAS  PubMed  Google Scholar 

  149. Shkumatava, A., Fischer, S., Muller, F., Strahle, U., Neumann, C.J.: Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 131, 3849–3858 (2004)

    Article  CAS  PubMed  Google Scholar 

  150. Moshiri, A., Reh, T.A.: Persistent progenitors at the retinal margin of ptc+/- mice. J. Neurosci. 24, 229–237 (2004)

    Article  CAS  PubMed  Google Scholar 

  151. Spence, J.R., Madhavan, M., Ewing, J.D., Jones, D.K., Lehman, B.M., Del Rio-Tsonis, K.: The hedgehog pathway is a modulator of retina regeneration. Development 131, 4607–4621 (2004)

    Article  CAS  PubMed  Google Scholar 

  152. Neumann, C.J., Nuesslein-Volhard, C.: Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289, 2137–2139 (2000)

    Article  CAS  PubMed  Google Scholar 

  153. Xu, H.E., Rould, M.A., Xu, W., Epstein, J.A., Maas, R.L., Pabo, C.O.: Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Dev. 13, 1263–1275 (1999)

    Article  CAS  PubMed  Google Scholar 

  154. Bateson, P.: William Bateson: a biologist ahead of his time. J. Genet. 81, 49–58 (2002)

    Article  PubMed  Google Scholar 

  155. Gillham, N.W.: Evolution by jumps: Francis Galton and William Bateson and the mechanism of evolutionary change. Genetics 159, 1383–1392 (2001)

    CAS  PubMed  Google Scholar 

  156. Rubin, G.M., Lewis, E.B.: A brief history of Drosophila’s contributions to genome research. Science 287, 2216–2218 (2000)

    Article  CAS  PubMed  Google Scholar 

  157. Lewis, E.B.: The bithorax complex: the first fifty years. Int. J. Dev. Biol. 42, 403–415 (1998)

    CAS  PubMed  Google Scholar 

  158. Lewis, E.B.: A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978)

    Article  CAS  PubMed  Google Scholar 

  159. Hombria, J.C., Lovegrove, B.: Beyond homeosis–HOX function in morphogenesis and organogenesis. Differentiation 71, 461–476 (2003)

    Article  PubMed  Google Scholar 

  160. Prince, V.: The Hox Paradox: more complex(es) than imagined. Dev. Biol. 249, 1–15 (2002)

    Article  CAS  PubMed  Google Scholar 

  161. Finnerty, J.R., Martindale, M.Q.: The evolution of the Hox cluster: insights from outgroups. Curr. Opin. Genet. Dev. 8, 681–687 (1998)

    Article  CAS  PubMed  Google Scholar 

  162. Akam, M.: Hox genes: from master genes to micromanagers. Curr. Biol. 8, R676–R678 (1998)

    Article  CAS  PubMed  Google Scholar 

  163. Capecchi, M.R.: Hox genes and mammalian development. Cold Spring Harb. Symp. Quant. Biol. 62, 273–281 (1997)

    Article  CAS  PubMed  Google Scholar 

  164. Mann, R.S.: Why are Hox genes clustered? Bioessays 19, 661–664 (1997)

    Article  CAS  PubMed  Google Scholar 

  165. Duboule, D.: Vertebrate Hox genes and proliferation: an alternative pathway to homeosis? Curr. Opin. Genet. Dev. 5, 525–528 (1995)

    Article  CAS  PubMed  Google Scholar 

  166. Ruddle, F.H., Bartels, J.L., Bentley, K.L., Kappen, C., Murtha, M.T., Pendleton, J.W.: Evolution of Hox genes. Annu. Rev. Genet. 28, 423–442 (1994)

    Article  CAS  PubMed  Google Scholar 

  167. Tabin, C.J.: Why we have (only) five fingers per hand: hox genes and the evolution of paired limbs. Development 116, 289–296 (1992)

    CAS  PubMed  Google Scholar 

  168. Gehring, W.J.: Exploring the homeobox. Gene 135, 215–221 (1993)

    Article  CAS  PubMed  Google Scholar 

  169. Gehring, W.J., Muller, M., Affolter, M., Percival-Smith, A., Billeter, M., Qian, Y.Q., Otting, G., Wuthrich, K.: The structure of the homeodomain and its functional implications. Trends Genet. 6, 323–329 (1990)

    Article  CAS  PubMed  Google Scholar 

  170. Gehring, W.J.: The homeobox in perspective. Trends Biochem. Sci. 17, 277–280 (1992)

    Article  CAS  PubMed  Google Scholar 

  171. Gehring, W.J., Hiromi, Y.: Homeotic genes and the homeobox. Annu. Rev. Genet. 20, 147–173 (1986)

    Article  CAS  PubMed  Google Scholar 

  172. Gehring, W.J.: Homeotic genes, the homeo box, and the genetic control of development. Cold Spring Harb. Symp. Quant. Biol. 50, 243–251 (1985)

    Article  CAS  PubMed  Google Scholar 

  173. Gehring, W.J.: The homeo box: a key to the understanding of development? Cell 40, 3–5 (1985)

    Article  CAS  PubMed  Google Scholar 

  174. Lewis, E.B.: Regulation of the genes of the bithorax complex in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 50, 155–164 (1985)

    Article  CAS  PubMed  Google Scholar 

  175. Christ, B., Schmidt, C., Huang, R., Wilting, J., Brand-Saberi, B.: Segmentation of the vertebrate body. Anat. Embryol (Berl). 197, 1–8 (1998)

    Article  CAS  Google Scholar 

  176. Gilbert, S.A.: Developmental biology. Inauer Associates, Sunderlan, MA (2003)

    Google Scholar 

  177. Lewin, B.: Genes VIII. Pearson, Upper Saddle River, NJ (2004)

    Google Scholar 

  178. Baldwin, C.T., Hoth, C.F., Macina, R.A., Milunsky, A.: Mutations in PAX3 that cause Waardenburg syndrome type I: ten new mutations and review of the literature. Am. J. Med. Genet. 58, 115–122 (1995)

    Article  CAS  PubMed  Google Scholar 

  179. Arias, S.: Waardenburg syndrome–two distinct types. Am. J. Med. Genet. 6, 99–100 (1980)

    Article  CAS  PubMed  Google Scholar 

  180. Baldwin, C.T., Lipsky, N.R., Hoth, C.F., Cohen, T., Mamuya, W., Milunsky, A.: Mutations in PAX3 associated with Waardenburg syndrome type I. Hum. Mutat. 3, 205–211 (1994)

    Article  CAS  PubMed  Google Scholar 

  181. Tassabehji, M., Read, A.P., Newton, V.E., Harris, R., Balling, R., Gruss, P., Strachan, T.: Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992)

    Article  CAS  PubMed  Google Scholar 

  182. Tassabehji, M., Read, A.P., Newton, V.E., Patton, M., Gruss, P., Harris, R., Strachan, T.: Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat. Genet. 3, 26–30 (1993)

    Article  CAS  PubMed  Google Scholar 

  183. Tremblay, P., Gruss, P.: Pax: genes for mice and men. Pharmacol. Ther. 61, 205–226 (1994)

    Article  CAS  PubMed  Google Scholar 

  184. Jordan, T., Hanson, I., Zaletayev, D., Hodgson, S., Prosser, J., Seawright, A., Hastie, N., van Heyningen, V.: The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1, 328–332 (1992)

    Article  CAS  PubMed  Google Scholar 

  185. Glaser, T., Walton, D.S., Maas, R.L.: Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 2, 232–239 (1992)

    Article  CAS  PubMed  Google Scholar 

  186. Hanson, I.M., Fletcher, J.M., Jordan, T., Brown, A., Taylor, D., Adams, R.J., Punnett, H.H., van Heyningen, V.: Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat. Genet. 6, 168–173 (1994)

    Article  CAS  PubMed  Google Scholar 

  187. Churchill, A.J., Booth, A.P., Anwar, R., Markham, A.F.: PAX 6 is normal in most cases of Peters’ anomaly. Eye 12(Pt 2), 299–303 (1998)

    Article  PubMed  Google Scholar 

  188. Dahl, E., Koseki, H., Balling, R.: Pax genes and organogenesis. Bioessays 19, 755–765 (1997)

    Article  CAS  PubMed  Google Scholar 

  189. Sanyanusin, P., Schimmenti, L.A., McNoe, L.A., Ward, T.A., Pierpont, M.E., Sullivan, M.J., Dobyns, W.B., Eccles, M.R.: Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat. Genet. 9, 358–364 (1995)

    Article  CAS  PubMed  Google Scholar 

  190. Sanyanusin, P., McNoe, L.A., Sullivan, M.J., Weaver, R.G., Eccles, M.R.: Mutation of PAX2 in two siblings with renal-coloboma syndrome. Hum. Mol. Genet. 4, 2183–2184 (1995)

    Article  CAS  PubMed  Google Scholar 

  191. Dureau, P., Attie-Bitach, T., Salomon, R., Bettembourg, O., Amiel, J., Uteza, Y., Dufier, J.L.: Renal coloboma syndrome. Ophthalmology 108, 1912–1916 (2001)

    Article  CAS  PubMed  Google Scholar 

  192. Chung, G.W., Edwards, A.O., Schimmenti, L.A., Manligas, G.S., Zhang, Y.H., Ritter 3rd, R.: Renal-coloboma syndrome: report of a novel PAX2 gene mutation. Am. J. Ophthalmol. 132, 910–914 (2001)

    Article  CAS  PubMed  Google Scholar 

  193. Schimmenti, L.A., Cunliffe, H.E., McNoe, L.A., Ward, T.A., French, M.C., Shim, H.H., Zhang, Y.H., Proesmans, W., Leys, A., Byerly, K.A., et al.: Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am. J. Hum. Genet. 60, 869–878 (1997)

    CAS  PubMed  Google Scholar 

  194. Wehr, R., Gruss, P.: Pax and vertebrate development. Int. J. Dev. Biol. 40, 369–377 (1996)

    CAS  PubMed  Google Scholar 

  195. Steel, K.P., Smith, R.J.: Normal hearing in Splotch (Sp/+), the mouse homologue of Waardenburg syndrome type 1. Nat. Genet. 2, 75–79 (1992)

    Article  CAS  PubMed  Google Scholar 

  196. Pilz, A.J., Povey, S., Gruss, P., Abbott, C.M.: Mapping of the human homologs of the murine paired-box-containing genes. Mamm. Genome 4, 78–82 (1993)

    Article  CAS  PubMed  Google Scholar 

  197. Chalepakis, G., Stoykova, A., Wijnholds, J., Tremblay, P., Gruss, P.: Pax: gene regulators in the developing nervous system. J. Neurobiol. 24, 1367–1384 (1993)

    Article  CAS  PubMed  Google Scholar 

  198. Hill, R.E., Favor, J., Hogan, B.L., Ton, C.C., Saunders, G.F., Hanson, I.M., Prosser, J., Jordan, T., Hastie, N.D., van Heyningen, V.: Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991)

    Article  CAS  PubMed  Google Scholar 

  199. Quiring, R., Walldorf, U., Kloter, U., Gehring, W.J.: Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265, 785–789 (1994)

    Article  CAS  PubMed  Google Scholar 

  200. Enwright 3rd, J.F., Grainger, R.M.: Altered retinoid signaling in the heads of small eye mouse embryos. Dev. Biol. 221, 10–22 (2000)

    Article  CAS  PubMed  Google Scholar 

  201. Schmahl, W., Knoedlseder, M., Favor, J., Davidson, D.: Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-locus. Acta Neuropathol (Berl). 86, 126–135 (1993)

    Article  CAS  Google Scholar 

  202. Matsuo, T., Osumi-Yamashita, N., Noji, S., Ohuchi, H., Koyama, E., Myokai, F., Matsuo, N., Taniguchi, S., Doi, H., Iseki, S., et al.: A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat. Genet. 3, 299–304 (1993)

    Article  CAS  PubMed  Google Scholar 

  203. Mansouri, A., Stoykova, A., Gruss, P.: Pax genes in development. J. Cell Sci. Suppl. 18, 35–42 (1994)

    CAS  PubMed  Google Scholar 

  204. Mansouri, A., Goudreau, G., Gruss, P.: Pax genes and their role in organogenesis. Cancer Res. 59, 1707s–1709s; discussion 1709s–1710s (1999)

    Google Scholar 

  205. Strachan, T., Read, A.P.: PAX genes. Curr. Opin. Genet. Dev. 4, 427–438 (1994)

    Article  CAS  PubMed  Google Scholar 

  206. Kim, A.S., Anderson, S.A., Rubenstein, J.L., Lowenstein, D.H., Pleasure, S.J.: Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS. J. Neurosci. 21, RC132 (2001)

    CAS  PubMed  Google Scholar 

  207. Noramly, S., Grainger, R.M.: Determination of the embryonic inner ear. J. Neurobiol. 53, 100–128 (2002)

    Article  CAS  PubMed  Google Scholar 

  208. Scotting, P.J., Rex, M.: Transcription factors in early development of the central nervous system. Neuropathol. Appl. Neurobiol. 22, 469–481 (1996)

    Article  CAS  PubMed  Google Scholar 

  209. Christ, B., Huang, R., Wilting, J.: The development of the avian vertebral column. Anat. Embryol (Berl). 202, 179–194 (2000)

    Article  CAS  Google Scholar 

  210. Nilsson, D.E.: Eye ancestry: old genes for new eyes. Curr. Biol. 6, 39–42 (1996)

    Article  CAS  PubMed  Google Scholar 

  211. Fernald, R.D.: Evolution of eyes. Curr. Opin. Neurobiol. 10, 444–450 (2000)

    Article  CAS  PubMed  Google Scholar 

  212. Fernald, R.D.: The evolution of eyes. Brain. Behav. Evol. 50, 253–259 (1997)

    Article  CAS  PubMed  Google Scholar 

  213. Gehring, W.J.: The master control gene for morphogenesis and evolution of the eye. Genes Cells 1, 11–15 (1996)

    Article  CAS  PubMed  Google Scholar 

  214. Halder, G., Callaerts, P., Flister, S., Walldorf, U., Kloter, U., Gehring, W.J.: Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 125, 2181–2191 (1998)

    CAS  PubMed  Google Scholar 

  215. Halder, G., Callaerts, P., Gehring, W.J.: Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995)

    Article  CAS  PubMed  Google Scholar 

  216. Gehring, W.J., Ikeo, K.: Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371–377 (1999)

    Article  CAS  PubMed  Google Scholar 

  217. Callaerts, P., Halder, G., Gehring, W.J.: PAX-6 in development and evolution. Annu. Rev. Neurosci. 20, 483–532 (1997)

    Article  CAS  PubMed  Google Scholar 

  218. Pichaud, F., Treisman, J., Desplan, C.: Reinventing a common strategy for patterning the eye. Cell 105, 9–12 (2001)

    Article  CAS  PubMed  Google Scholar 

  219. Pichaud, F., Desplan, C.: Pax genes and eye organogenesis. Curr. Opin. Genet. 12, 430–434 (2002)

    Article  CAS  Google Scholar 

  220. David, J.R.: Evolution and development: some insights from evolutionary theory. An. Acad. Bras. Cienc. 73, 385–395 (2001)

    Article  CAS  PubMed  Google Scholar 

  221. Glardon, S., Callaerts, P., Halder, G., Gehring, W.J.: Conservation of Pax-6 in a lower chordate, the ascidian Phallusia mammillata. Development 124, 817–825 (1997)

    CAS  PubMed  Google Scholar 

  222. Sun, H., Rodin, A., Zhou, Y., Dickinson, D.P., Harper, D.E., Hewett-Emmett, D., Li, W.H.: Evolution of paired domains: isolation and sequencing of jellyfish and hydra Pax genes related to Pax-5 and Pax-6. Proc. Natl. Acad. Sci. USA 94, 5156–5161 (1997)

    Article  CAS  PubMed  Google Scholar 

  223. Kozmik, Z., Holland, N.D., Kalousova, A., Paces, J., Schubert, M., Holland, L.Z.: Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development 126, 1295–1304 (1999)

    CAS  PubMed  Google Scholar 

  224. Glardon, S., Holland, L.Z., Gehring, W.J., Holland, N.D.: Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125, 2701–2710 (1998)

    CAS  PubMed  Google Scholar 

  225. Rabl, C.: Uber den Bau und die Entwicklung der Linse. I. Selachier und Amphibien. Ztschr f wiss Z Zool 63, 496–572 (1898)

    Google Scholar 

  226. Jacobson, A.G., Sater, A.K.: Features of embryonic induction. Development 104, 341–359 (1988)

    CAS  PubMed  Google Scholar 

  227. Lopashov, G.V., Zemchikhina, V.N.: Hierarchy of inductive events. Dev. Growth Differ. 39, 661–665 (1997)

    Article  CAS  PubMed  Google Scholar 

  228. McAvoy, J.W., Chamberlain, C.G., de Iongh, R.U., Richardson, N.A., Lovicu, F.J.: The role of fibroblast growth factor in eye lens development. Ann. N. Y. Acad. Sci. 638, 256–274 (1991)

    Article  CAS  PubMed  Google Scholar 

  229. McAvoy, J.W., Chamberlain, C.G., de Iongh, R.U., Hales, A.M., Lovicu, F.J.: Lens development. Eye 13(Pt 3b), 425–437 (1999)

    Article  PubMed  Google Scholar 

  230. de Iongh, R., McAvoy, J.W.: Spatio-temporal distribution of acidic and basic FGF indicates a role for FGF in rat lens morphogenesis. Dev. Dyn. 198, 190–202 (1993)

    Article  PubMed  Google Scholar 

  231. Hyer, J., Mima, T., Mikawa, T.: FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 125, 869–877 (1998)

    CAS  PubMed  Google Scholar 

  232. Park, C.M., Hollenberg, M.J.: Basic fibroblast growth factor induces retinal regeneration in vivo. Dev. Biol. 134, 201–205 (1989)

    Article  CAS  PubMed  Google Scholar 

  233. Hyer, J., Kuhlman, J., Afif, E., Mikawa, T.: Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Dev. Biol. 259, 351–363 (2003)

    Article  CAS  PubMed  Google Scholar 

  234. Cuenot, L.: Regeneration de pattes a la place d’antennes sectionnees chezun Phasme. Compets. Rendus. Acad. Sci. Paris 172, 949–952 (1921)

    Article  PubMed  Google Scholar 

  235. Mic, F.A., Molotkov, A., Molotkova, N., Duester, G.: Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation. Dev. Dyn. 231, 270–277 (2004)

    Article  CAS  PubMed  Google Scholar 

  236. Fan, X., Molotkov, A., Manabe, S., Donmoyer, C.M., Deltour, L., Foglio, M.H., Cuenca, A.E., Blaner, W.S., Lipton, S.A., Duester, G.: Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Mol. Cell Biol. 23, 4637–4648 (2003)

    Article  CAS  PubMed  Google Scholar 

  237. Schmitt, E.A., Dowling, J.E.: Early eye morphogenesis in the zebrafish, Brachydanio rerio. J. Comp. Neurol. 344, 532–542 (1994)

    Article  CAS  PubMed  Google Scholar 

  238. Martinez-Morales, J.R., Rodrigo, I., Bovolenta, P.: Eye development: a view from the retina pigmented epithelium. Bioessays 26, 766–777 (2004)

    Article  CAS  PubMed  Google Scholar 

  239. Zuber, M.E., Gestri, G., Viczian, A.S., Barsacchi, G., Harris, W.A.: Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167 (2003)

    Article  CAS  PubMed  Google Scholar 

  240. Pittack, C., Grunwald, G.B., Reh, T.A.: Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124, 805–816 (1997)

    CAS  PubMed  Google Scholar 

  241. Pittack, C., Jones, M., Reh, T.A.: Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development 113, 577–588 (1991)

    CAS  PubMed  Google Scholar 

  242. Fuhrmann, S., Levine, E.M., Reh, T.A.: Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 127, 4599–4609 (2000)

    CAS  PubMed  Google Scholar 

  243. Belecky-Adams, T.L., Scheurer, D., Adler, R.: Activin family members in the developing chick retina: expression patterns, protein distribution, and in vitro effects. Dev. Biol. 210, 107–123 (1999)

    Article  CAS  PubMed  Google Scholar 

  244. Davis, A.A., Matzuk, M.M., Reh, T.A.: Activin A promotes progenitor differentiation into photoreceptors in rodent retina. Mol. Cell Neurosci. 15, 11–21 (2000)

    Article  CAS  PubMed  Google Scholar 

  245. Goding, C.R.: Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712–1728 (2000)

    CAS  PubMed  Google Scholar 

  246. Tachibana, M.: MITF: a stream flowing for pigment cells. Pigment Cell Res. 13, 230–240 (2000)

    Article  CAS  PubMed  Google Scholar 

  247. Tachibana, M., Kobayashi, Y., Matsushima, Y.: Mouse models for four types of Waardenburg syndrome. Pigment Cell Res. 16, 448–454 (2003)

    Article  CAS  PubMed  Google Scholar 

  248. Tachibana, M.: A cascade of genes related to Waardenburg syndrome. J. Investig. Dermatol. Symp. Proc. 4, 126–129 (1999)

    Article  CAS  PubMed  Google Scholar 

  249. Tachibana, M., Perez-Jurado, L.A., Nakayama, A., Hodgkinson, C.A., Li, X., Schneider, M., Miki, T., Fex, J., Francke, U., Arnheiter, H.: Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum. Mol. Genet. 3, 553–557 (1994)

    Article  CAS  PubMed  Google Scholar 

  250. Horsford, D.J., Nguyen, M.T., Sellar, G.C., Kothary, R., Arnheiter, H., McInnes, R.R.: Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 132, 177–187 (2005)

    Article  CAS  PubMed  Google Scholar 

  251. Ferda Percin, E., Ploder, L.A., Yu, J.J., Arici, K., Horsford, D.J., Rutherford, A., Bapat, B., Cox, D.W., Duncan, A.M., Kalnins, V.I., et al.: Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat. Genet. 25, 397–401 (2000)

    Article  CAS  PubMed  Google Scholar 

  252. Bok, D.: Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 26, 1659–1694 (1985)

    CAS  PubMed  Google Scholar 

  253. Bok, D.: The retinal pigment epithelium: a versatile partner in vision. J. Cell Sci. Suppl. 17, 189–195 (1993)

    CAS  PubMed  Google Scholar 

  254. Mieziewska, K.: The interphotoreceptor matrix, a space in sight. Microsc. Res. Tech. 35, 463–471 (1996)

    Article  CAS  PubMed  Google Scholar 

  255. Hageman, G.S., Johnson, L.V.: Structure, composition and function of the retinal interphotoreceptor matrix. Prog. Ret. Res. 10, 207–249 (1991)

    Article  CAS  Google Scholar 

  256. Hageman, G.S., Kuehn, M.H.: Biology of the interphotoreceptor matrix-retinal interface. In: Marmor, M.F., Wolfensberber, T.J. (eds.) The retinal pigment epithelium, pp. 361–391. Oxford University, New York (1998)

    Google Scholar 

  257. Hageman, G.S., Kirchoff-Rempe, M.A., Lewis, G.P., Fisher, S.K., Anderson, D.H.: Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix. Proc. Natl. Acad. Sci. USA 88, 6706–6710 (1991)

    Article  CAS  PubMed  Google Scholar 

  258. Hewitt, A.T., Lindsey, J.D., Carbott, D., Adler, R.: Photoreceptor survival-promoting activity in interphotoreceptor matrix preparations: characterization and partial purification. Exp. Eye Res. 50, 79–88 (1990)

    Article  CAS  PubMed  Google Scholar 

  259. Plantner, J.J., Smine, A., Quinn, T.A.: Matrix metalloproteinases and metalloproteinase inhibitors in human interphotoreceptor matrix and vitreous. Curr. Eye Res. 17, 132–140 (1998)

    Article  CAS  PubMed  Google Scholar 

  260. Hollyfield, J.G.: Hyaluronan and the functional organization of the interphotoreceptor matrix. Invest. Ophthalmol. Vis. Sci. 40, 2767–2769 (1999)

    CAS  PubMed  Google Scholar 

  261. Kuehn, M.H., Hageman, G.S.: Expression and characterization of the IPM 150 gene (IMPG1) product, a novel human photoreceptor cell-associated chondroitin-sulfate proteoglycan. Matrix Biol. 18, 509–518 (1999)

    Article  CAS  PubMed  Google Scholar 

  262. Hollyfield, J.G., Witkovsky, P.: Pigmented retinal epithelium involvement in photoreceptor development and function. J. Exp. Zool. 189, 357–378 (1974)

    Article  CAS  PubMed  Google Scholar 

  263. Stiemke, M.M., Landers, R.A., al-Ubaidi, M.R., Rayborn, M.E., Hollyfield, J.G.: Photoreceptor outer segment development in Xenopus laevis: influence of the pigment epithelium. Dev. Biol. 162, 169–180 (1994)

    Google Scholar 

  264. Carter-Dawson, L., Burroughs, M.: Differential distribution of interphotoreceptor retinoid-binding protein (IRBP) around retinal rod and cone photoreceptors. Curr. Eye Res. 8, 1331–1334 (1989)

    Article  CAS  PubMed  Google Scholar 

  265. Eisenfeld, A.J., Bunt-Milam, A.H., Saari, J.C.: Localization of retinoid-binding proteins in developing rat retina. Exp. Eye Res. 41, 299–304 (1985)

    Article  CAS  PubMed  Google Scholar 

  266. Gonzalez-Fernandez, F., Healy, J.I.: Early expression of the gene for interphotoreceptor retinol-binding protein during photoreceptor differentiation suggests a critical role for the interphotoreceptor matrix in retinal development. J. Cell Biol. 111, 2775–2784 (1990)

    Article  CAS  PubMed  Google Scholar 

  267. Hauswirth, W.W., Langerijt, A.V., Timmers, A.M., Adamus, G., Ulshafer, R.J.: Early expression and localization of rhodopsin and interphotoreceptor retinoid-binding protein (IRBP) in the developing fetal bovine retina. Exp. Eye Res. 54, 661–670 (1992)

    Article  CAS  PubMed  Google Scholar 

  268. Heussler, H.S., Suri, M., Young, I.D., Muenke, M.: Extreme variability of expression of a Sonic Hedgehog mutation: attention difficulties and holoprosencephaly. Arch. Dis. Child. 86, 293–296 (2002)

    Article  CAS  PubMed  Google Scholar 

  269. Herr, F.M., Matarese, V., Bernlohr, D.A., Storch, J.: Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes. Biochemistry 34, 11840–11845 (1995)

    Article  CAS  PubMed  Google Scholar 

  270. DesJardin, L.E., Timmers, A.M., Hauswirth, W.W.: Transcription of photoreceptor genes during fetal retinal development. Evidence for positive and negative regulation. J. Biol. Chem. 268, 6953–6960 (1993)

    CAS  PubMed  Google Scholar 

  271. Gonzalez-Fernandez, F., Van Niel, E., Edmonds, C., Beaver, H., Nickerson, J.M., Garcia-Fernandez, J.M., Campohiaro, P.A., Foster, R.G.: Differential expression of interphotoreceptor retinoid-binding protein, opsin, cellular retinaldehyde-binding protein, and basic fibroblastic growth factor. Exp. Eye Res. 56, 411–427 (1993)

    Article  CAS  PubMed  Google Scholar 

  272. Liou, G.I., Wang, M., Matragoon, S.: Precocious IRBP gene expression during mouse development. Invest. Ophthalmol. Vis. Sci. 35, 1083–1088 (1994)

    CAS  PubMed  Google Scholar 

  273. Liou, G.I., Wang, M., Matragoon, S.: Timing of interphotoreceptor retinoid-binding protein (IRBP) gene expression and hypomethylation in developing mouse retina. Dev. Biol. 161, 345–356 (1994)

    Article  CAS  PubMed  Google Scholar 

  274. Liou, G.I., Matragoon, S., Chen, D.M., Gao, C.L., Zhang, L., Fei, Y., Katz, M.L., Stark, W.S.: Visual sensitivity and interphotoreceptor retinoid binding protein in the mouse: regulation by vitamin A. FASEB. J. 12, 129–138 (1998)

    CAS  PubMed  Google Scholar 

  275. Hessler, R.B., Baer, C.A., Bukelman, A., Kittredge, K.L., Gonzalez-Fernandez, F.: Interphotoreceptor retinoid-binding protein (IRBP): expression in the adult and developing Xenopus retina. J. Comp. Neurol. 367, 329–341 (1996)

    Article  CAS  PubMed  Google Scholar 

  276. Zhu, L., Skoultchi, A.I.: Coordinating cell proliferation and differentiation. Curr. Opin. Genet. Dev. 11, 91–97 (2001)

    Article  CAS  PubMed  Google Scholar 

  277. Dyer, M.A., Cepko, C.L.: Regulating proliferation during retinal development. Nat. Rev. Neurosci. 2, 333–342 (2001)

    Article  CAS  PubMed  Google Scholar 

  278. Turner, D.L., Cepko, C.L.: A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131–136 (1987)

    Article  CAS  PubMed  Google Scholar 

  279. Cepko, C.L., Ryder, E., Austin, C., Golden, J., Fields-Berry, S., Lin, J.: Lineage analysis using retroviral vectors. Methods 14, 393–406 (1998)

    Article  CAS  PubMed  Google Scholar 

  280. Rapaport, D.H., Wong, L.L., Wood, E.D., Yasumura, D., LaVail, M.M.: Timing and topography of cell genesis in the rat retina. J. Comp. Neurol. 474, 304–324 (2004)

    Article  PubMed  Google Scholar 

  281. Livesey, F.J., Cepko, C.L.: Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2, 109–118 (2001)

    Article  CAS  PubMed  Google Scholar 

  282. Young, R.W.: Cell proliferation during postnatal development of the retina in the mouse. Brain Res. 353, 229–239 (1985)

    CAS  PubMed  Google Scholar 

  283. Young, R.W.: Cell differentiation in the retina of the mouse. Anat. Rec. 212, 199–205 (1985)

    Article  CAS  PubMed  Google Scholar 

  284. Wetts, R., Fraser, S.E.: Multipotent precursors can give rise to all major cell types of the frog retina. Science 239, 1142–1145 (1988)

    Article  CAS  PubMed  Google Scholar 

  285. Holt, C.E., Bertsch, T.W., Ellis, H.M., Harris, W.A.: Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1, 15–26 (1988)

    Article  CAS  PubMed  Google Scholar 

  286. Fekete, D.M., Perez-Miguelsanz, J., Ryder, E.F., Cepko, C.L.: Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells. Dev. Biol. 166, 666–682 (1994)

    Article  CAS  PubMed  Google Scholar 

  287. Cepko, C.L., Austin, C.P., Yang, X., Alexiades, M., Ezzeddine, D.: Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 589–595 (1996)

    Article  CAS  PubMed  Google Scholar 

  288. Adler, R., Hatlee, M.: Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science 243, 391–393 (1989)

    Article  CAS  PubMed  Google Scholar 

  289. Sparrow, J.R., Hicks, D., Barnstable, C.J.: Cell commitment and differentiation in explants of embryonic rat neural retina. Comparison with the developmental potential of dissociated retina. Brain Res. Dev. Brain Res. 51, 69–84 (1990)

    Article  CAS  PubMed  Google Scholar 

  290. Reh, T.A.: Cellular interactions determine neuronal phenotypes in rodent retinal cultures. J. Neurobiol. 23, 1067–1083 (1992)

    Article  CAS  PubMed  Google Scholar 

  291. Watanabe, T., Raff, M.C.: Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4, 461–467 (1990)

    Article  CAS  PubMed  Google Scholar 

  292. Cepko, C.L.: The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr. Opin. Neurobiol. 9, 37–46 (1999)

    Article  CAS  PubMed  Google Scholar 

  293. Altshuler, D., Lo Turco, J.J., Rush, J., Cepko, C.: Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development 119, 1317–1328 (1993)

    Google Scholar 

  294. Altshuler, D., Cepko, C.: A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114, 947–957 (1992)

    CAS  PubMed  Google Scholar 

  295. Cepko, C.L.: The patterning and onset of opsin expression in vertebrate retinae. Curr. Opin. Neurobiol. 6, 542–546 (1996)

    Article  CAS  PubMed  Google Scholar 

  296. Daniels, M., Dhokia, V., Richard-Parpaillon, L., Ohnuma, S.: Identification of Xenopus cyclin-dependent kinase inhibitors, p16Xic2 and p17Xic3. Gene 342, 41–47 (2004)

    Article  CAS  PubMed  Google Scholar 

  297. Yang, Z., Ding, K., Pan, L., Deng, M., Gan, L.: Math5 determines the competence state of retinal ganglion cell progenitors. Dev. Biol. 264, 240–254 (2003)

    Article  CAS  PubMed  Google Scholar 

  298. Levine, E.M., Close, J., Fero, M., Ostrovsky, A., Reh, T.A.: p27(Kip1) regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina. Dev. Biol. 219, 299–314 (2000)

    Article  CAS  PubMed  Google Scholar 

  299. Dyer, M.A., Cepko, C.L.: p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J. Neurosci. 21, 4259–4271 (2001)

    CAS  PubMed  Google Scholar 

  300. Dyer, M.A., Cepko, C.L.: p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127, 3593–3605 (2000)

    CAS  PubMed  Google Scholar 

  301. Morrow, E.M., Belliveau, M.J., Cepko, C.L.: Two phases of rod photoreceptor differentiation during rat retinal development. J. Neurosci. 18, 3738–3748 (1998)

    CAS  PubMed  Google Scholar 

  302. Zhang, J., Gray, J., Wu, L., Leone, G., Rowan, S., Cepko, C.L., Zhu, X., Craft, C.M., Dyer, M.A.: Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat. Genet. 36, 351–360 (2004)

    Article  PubMed  CAS  Google Scholar 

  303. Levine, E.M., Green, E.S.: Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Semin. Cell Dev. Biol. 15, 63–74 (2004)

    Article  CAS  PubMed  Google Scholar 

  304. Dyer, M.A., Livesey, F.J., Cepko, C.L., Oliver, G.: Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat. Genet. 34, 53–58 (2003)

    Article  CAS  PubMed  Google Scholar 

  305. Rehen, S.K., Cid, M., Fragel-Madeira, L., Linden, R.: Differential effects of cyclin-dependent kinase blockers upon cell death in the developing retina. Brain Res. 947, 78–83 (2002)

    Article  CAS  PubMed  Google Scholar 

  306. Vincent, M.C., Gallai, R., Olivier, D., Speeg-Schatz, C., Flament, J., Calvas, P., Dollfus, H.: Variable phenotype related to a novel PAX 6 mutation (IVS4+5G>C) in a family presenting congenital nystagmus and foveal hypoplasia. Am. J. Ophthalmol. 138, 1016–1021 (2004)

    Article  CAS  PubMed  Google Scholar 

  307. Azuma, N.: Molecular cell biology on morphogenesis of the fovea and evolution of the central vision. Nippon Ganka Gakkai Zasshi 104, 960–985 (2000)

    CAS  PubMed  Google Scholar 

  308. Ohba, N.: Introduction to genetics in ophthalmology, value of family studies. Jpn. J. Ophthalmol. 44, 320–321 (2000)

    Article  PubMed  Google Scholar 

  309. Hendrickson, A.E.: Primate foveal development: a microcosm of current questions in neurobiology. Invest. Ophthalmol. Vis. Sci. 35, 3129–3133 (1994)

    CAS  PubMed  Google Scholar 

  310. Provis, J.M.: Development of the primate retinal vasculature. Prog. Retin. Eye Res. 20, 799–821 (2001)

    Article  CAS  PubMed  Google Scholar 

  311. Hendrickson, A.E., Yuodelis, C.: The morphological development of the human fovea. Ophthalmology 91, 603–612 (1984)

    CAS  PubMed  Google Scholar 

  312. Hendrickson, A., Kupfer, C.: The histogenesis of the fovea in the macaque monkey. Invest. Ophthalmol. Vis. Sci. 15, 746–756 (1976)

    CAS  PubMed  Google Scholar 

  313. Provis, J.M., van Driel, D., Billson, F.A., Russell, P.: Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J. Comp. Neurol. 233, 429–451 (1985)

    Article  CAS  PubMed  Google Scholar 

  314. van Driel, D., Provis, J.M., Billson, F.A.: Early differentiation of ganglion, amacrine, bipolar, and Muller cells in the developing fovea of human retina. J. Comp. Neurol. 291, 203–219 (1990)

    Article  PubMed  Google Scholar 

  315. Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E.: Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990)

    Article  CAS  PubMed  Google Scholar 

  316. Hendrickson, A., Drucker, D.: The development of parafoveal and mid-peripheral human retina. Behav. Brain Res. 49, 21–31 (1992)

    Article  CAS  PubMed  Google Scholar 

  317. Provis, J.M., Diaz, C.M., Dreher, B.: Ontogeny of the primate fovea: a central issue in retinal development. Prog. Neurobiol. 54, 549–580 (1998)

    Article  CAS  PubMed  Google Scholar 

  318. Georges, P., Madigan, M.C., Provis, J.M.: Apoptosis during development of the human retina: relationship to foveal development and retinal synaptogenesis. J. Comp. Neurol. 413, 198–208 (1999)

    Article  CAS  PubMed  Google Scholar 

  319. Diaz-Araya, C., Provis, J.M.: Evidence of photoreceptor migration during early foveal development: a quantitative analysis of human fetal retinae. Vis. Neurosci. 8, 505–514 (1992)

    Article  CAS  PubMed  Google Scholar 

  320. Engerman, R.L.: Development of the macular circulation. Invest. Ophthalmol. 15, 835–840 (1976)

    CAS  PubMed  Google Scholar 

  321. Gariano, R.F., Provis, J.M., Hendrickson, A.E.: Development of the foveal avascular zone. Ophthalmology 2000, 107 (1026)

    Google Scholar 

  322. Gariano, R.F., Sage, E.H., Kaplan, H.J., Hendrickson, A.E.: Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest. Ophthalmol. Vis. Sci. 37, 2367–2375 (1996)

    CAS  PubMed  Google Scholar 

  323. Sandercoe, T.M., Geller, S.F., Hendrickson, A.E., Stone, J., Provis, J.M.: VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: evidence of developmental hypoxia. J. Comp. Neurol. 462, 42–54 (2003)

    Article  CAS  PubMed  Google Scholar 

  324. Springer, A.D., Hendrickson, A.E.: Development of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation. Vis. Neurosci. 21, 53–62 (2004)

    CAS  PubMed  Google Scholar 

  325. Yuodelis, C., Hendrickson, A.: A qualitative and quantitative analysis of the human fovea during development. Vision Res. 26, 847–855 (1986)

    Article  CAS  PubMed  Google Scholar 

  326. Provis, J.M., Penfold, P.L.: Cell death and the elimination of retinal axons during development. Prog. Neurobiol. 31, 331–347 (1988)

    Article  CAS  PubMed  Google Scholar 

  327. Duke-Elder, S.: The eye in evolution. C.V. Mosby, St. Louis (1958)

    Google Scholar 

  328. Spemann, H.: Zur Entwicklung des Wirbeltierauges. Zool Jahrb Abt F allg Zool u Phys d Tiere 32, 1–98 (1912)

    Google Scholar 

  329. Cook, T.: Cell diversity in the retina: more than meets the eye. Bioessays 25, 921–925 (2003)

    Article  CAS  PubMed  Google Scholar 

  330. De Leeuw, A.M., Gaur, V.P., Saari, J.C., Milam, A.H.: Immunolocalization of cellular retinol-, retinaldehyde- and retinoic acid-binding proteins in rat retina during pre- and postnatal development. J. Neurocytol. 19, 253–264 (1990)

    Article  PubMed  Google Scholar 

  331. Eisenfeld, A.J., Bunt-Milam, A.H., Saari, J.C.: Immunocytochemical localization of retinoid-binding proteins in developing normal and RCS rats. Prog. Clin. Biol. Res. 190, 231–240 (1985)

    CAS  PubMed  Google Scholar 

  332. Saari, J.C., Bunt-Milam, A.H., Bredberg, D.L., Garwin, G.G.: Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina. Vision Res. 24, 1595–1603 (1984)

    Article  CAS  PubMed  Google Scholar 

  333. Bunt-Milam, A.H., Saari, J.C.: Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J. Cell Biol. 97, 703–712 (1983)

    Article  CAS  PubMed  Google Scholar 

  334. Hogan, M.: Histology of the human eye. W.B. Saunders, Philadelphia (1971)

    Google Scholar 

  335. Krebs, I.P., Krebs, W.: Discontinuities of the external limiting membrane in the fovea centralis of the primate retina. Exp. Eye Res. 48, 295–301 (1989)

    Article  CAS  PubMed  Google Scholar 

  336. Bunt-Milam, A.H., Saari, J.C., Klock, I.B., Garwin, G.G.: Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Invest. Ophthalmol. Vis. Sci. 26, 1377–1380 (1985)

    CAS  PubMed  Google Scholar 

  337. Stanton, B.Z., Peng, L.F. : Small-molecule modulators of the Sonic Hedgehog signaling pathway. Mol Biosyst. 6, 44–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  338. Ogino, H., M. Fisher, and Grainger, R.M.: Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification. Development 135, 249–258 (2008)

    Google Scholar 

Download references

Acknowledgements

We extend an apology to the authors of the many excellent papers that could not be cited directly because of space constraints. Dr Gonzalez-Fernandez holds the Ira G. Olmsted Ross and Elizabeth P. Ross Chair of Ophthalmic Pathology. The Work was supported in part by Merit Review Award I01BX007080 from the Biomedical Laboratory Research & Development Service of the Veterans Affairs Office of Research and Development, RO1 EY09412, R24 EY016662 core instrumentation grant, and an unrestricted grant from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Gonzalez-Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Gonzalez-Fernandez, F. (2011). Development of the Retina. In: Reynolds, J., Olitsky, S. (eds) Pediatric Retina. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12041-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12041-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12040-4

  • Online ISBN: 978-3-642-12041-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics