Skip to main content

The Parishan Pluton in Qorveh Area, an Example for Magma Mingling Process, Southeastern Sanandaj, Iran

  • Chapter
  • First Online:
Dyke Swarms:Keys for Geodynamic Interpretation

Abstract

The area under investigation is located between 47°42′ and 48° E-Longitude and 34°50′ and 50°10′ N-Latitude and south of Qorveh town about 70 km SE Sanandaj city. The Parishan pluton is an elliptical pluton which covers an area of approximately 40 km2 and it is a part of the Qorveh Granitoid Complex (QGC). The combination of field, petrographic and geochemical data show that the Parishan pluton composed of the dioritic and granodioritic-granitic units and dykes of dioritic to melanodioritic in composition. The granodiorite commonly contains microgranular enclaves (MME). The MMEs are dioritic-meladioritic rocks in composition, typically about 10–40 cm in diameter and subangular to near-oval in shape with chilled to fine grained contacts. This investigation attempts to describe mingling of felsic and mafic magmas (mafic dykes) in Parishan pluton. Field (e.g. contacts sharp boundaries enclaves, lack compositional or textural zones related to their margins and heterogeneous distribution of enclaves), textural (e.g. the chemical zonation of plagioclase crystals) and geochemical (e.g. compositional gap between 55 and 65 wt% SiO2 contents, curvilinear trends in Harker variations diagrams) evidences suggest that this could not have occurred by significant interaction with the enclosing host rocks. Therefore, enclaves could have been formed by magma mingling process by rapid cooling within the host granitoid magma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alavi M (1994) Tectonics of the Zagros Orogenic belt of Iran: New data and interpretations. Tectonophysics 229: 211–238

    Article  Google Scholar 

  • Barbarin B (1988a) Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint-Julien-la-Vetre Monzogranite (Nord-Forez, Massif Central, France). Can J Earth Sci 25: 49–59

    Article  Google Scholar 

  • Barbarin B (1991) Enclaves of the Mesozoic calc-alkaline granitoids of the Sierra Nevada Batholiths, California. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Elsevier, Amsterdam: 135–153

    Google Scholar 

  • Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Trans Roy Soc Edinburgh Earth Sci 83: 145–153

    Article  Google Scholar 

  • Bea F, Fershtater G, Montero P, Smirnov V, Zin’kova E (1997) Generation and evolution of subduction-related batholiths from the central Urals: Constraints on the P-T history of the Uralian orogen. Tectonophysics 276: 103–116

    Article  Google Scholar 

  • Bellon H, Broud J (1975) Donnes nouvelles sur le domaine metamorphjque du Zagros (zone de Sanandaj-Sirjan) au niveau de Kermanshah-Hamadan (Iran), Nature, age et interpretation des series metamorphiques et des intrusions, evolution structural. Fac Sci Orsay Paris 14

    Google Scholar 

  • Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. Geol Survey Iran 52: 565–592

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a Paleogeography and Tectonic Evolution of Iran. Can J Earth Sci 18: 210–265

    Article  Google Scholar 

  • Castro A, Moreno-Ventas I, De La Rosa JD (1991) H-type (hybrid) granitoids: A proposed revision of the granite-type classification and nomenclature. Earth Sci Rev 31: 237–253

    Article  Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans Roy Soc Edinburgh Earth Sci 83: 1–26

    Article  Google Scholar 

  • Clemens JD (1989) The importance of residual source material (restite) in granite petrogenesis: A comment. J Petrol 30: 1313–1316

    Article  Google Scholar 

  • Dahlquist JA (2002) Mafic microgranular enclaves: Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. J South Am Earth Sci 15: 643–655

    Article  Google Scholar 

  • Didier J (1973) Granites and Their Enclaves. Elsevier, Amsterdam

    Google Scholar 

  • Didier J, Barbarin B (1991) The different types of enclaves in granites – nomenclature. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Elsevier, Amsterdam: 19–24

    Google Scholar 

  • Dorais MJ, Whitney JA, Roden MF (1990) The origin of mafic enclaves from the Dinkey Creek Pluton, Central Sierra Nevada Batholith. J Petrol 31: 53–81

    Article  Google Scholar 

  • Elburg MA (1996) Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton Granodiorite, Lachlan Fold Belt, Australia. Lithos 38: 1–22

    Article  Google Scholar 

  • Fershtater GB, Borodina NS (1991) Enclaves in the Hercynian granitoids of the Urals Mountains, USSR. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Elsevier, Amsterdam: 83–94

    Google Scholar 

  • Furman T, Spera FJ (1985) Co-mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths, field and petrochemical relations of an usual dike complex at Eangle Peak Laek, Sequoia National Park, California, USA. J Volcanol Geotherm Res 24: 151–178

    Article  Google Scholar 

  • Hosseini M (1997) Geological Quadrangle Map of Qorveh, No. 5, Sanandaj (Qorveh), 1:100000. Geol Surv Iran.

    Google Scholar 

  • Orsini JB, Cocirta C, Zorpi MJ (1991) Genesis of mafic microgranular enclaves through differentiation of basic magmas, mingling and chemical exchanges with their host granitoid magmas. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Elsevier, Amsterdam: 445–464

    Google Scholar 

  • Pitcher WS (1991) Synplutonic dykes and mafic enclaves. In: Didier J, Barbarin B (eds) Enclaves and Granite Petrology. Elsevier, Amsterdam: 383–392

    Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” correction procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam Analysis. San Francisco Press, San Francisco, CA: 104–106

    Google Scholar 

  • Richard LR (1995) MinPet: Mineralogical and petrological data processing system, version 2.02. MinPet Geological Software, Québec

    Google Scholar 

  • Roberts MP, Pin C, Clemens JD, Paquette J (2000) Petrogenesis of mafic to felsic plutonic rock associations: The calc-alkaline Querigut Complex, French Pyrenees. J Petrol 41: 809–844

    Article  Google Scholar 

  • Sial AN, Ferreira VP, Fallick AE (1998) Amphibole-rich clots in calc-alkalic granitoids in the Borborema province, northeastern Brazil. J South Am Earth Sci 11: 457–471

    Article  Google Scholar 

  • Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silisic magmas. J Volcanol Geotherm Res 29: 99–124

    Article  Google Scholar 

  • Stephens WE (2001) Polycrystalline amphibole aggregates (clots) in granites as potential I-type restite: An ion microprobe study of rare-earth distributions. Aust J Earth Sci 48: 591–601

    Article  Google Scholar 

  • Tindle AG (1991) Treace elements behavior in microgranular enclaves from granitic rocks. In: Didier J, Barbarin B (eds) Developments in Petrology. Enclaves and Granite Petrology. Elsevier, Amsterdam: 313–332

    Google Scholar 

  • Torkian A (2008) Magmatism investigation of the South-Qorveh Granodiorite intrusive body (Kurdistan), PhD Thesis, Univ. of Isfahan, Iran

    Google Scholar 

  • Torkian A, Khalili M, Sepahi AA (2008) Petrology and geochemistry of the I-type calc-alkaline Qorveh Granitoid Complex, Sanandaj-Sirjan Zone, western Iran. N Jb Miner Abh 185/2: 131–142

    Article  Google Scholar 

  • Valizadeh MV, Cantagrel JM (1975) Premières données radiométriques (K-Ar et Rb-Sr) Sur Les micas du Complexe magmaitque du Mont Alvand, près Hamadan (Iran Occidental), Série D. C.R.A. S, Paris: 1083–1086

    Google Scholar 

  • Vernon RH (1984) Micro granitoid enclaves in granites globules of hybrid magma quenched in a plutonic environment. Nature 309: 438–439

    Article  Google Scholar 

  • Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source compositions. J Geol 95: 731–749

    Article  Google Scholar 

  • Wiebe RA (1991) Commingling of contrasted magmas in the plutonic environment: Examples from the Nain Anorthositic Complex. J Geol 88: 197–209

    Article  Google Scholar 

Download references

Acknowledgments

I express my appreciation to B. C. Prabhakar for constructive comments and helpful suggestions. I also thank G. Morgan, University of Oklahoma in Norman (USA), and to R. Conery, GeoAnalytical Laboratory Washington State University (USA). I express my appreciation to Rajesh K. Srivastava for encouraging me to contribute to the IDC-6 volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Torkian .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Torkian, A. (2011). The Parishan Pluton in Qorveh Area, an Example for Magma Mingling Process, Southeastern Sanandaj, Iran. In: Dyke Swarms:Keys for Geodynamic Interpretation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12496-9_20

Download citation

Publish with us

Policies and ethics