Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 284))

Abstract

Many real world optimization problems are dynamic, meaning that their optimal solutions are time-varying. In recent years, an effective approach to address these problems has been the multi-swarmPSO (mPSO). Despite this, we believe that there is still room for improvement and, in this contribution we propose two simple strategies to increase the effectiveness of mPSO. The first one faces the diversity loss in the swarm after an environment change; while the second one increases the efficiency through stopping swarms showing a bad behavior. From the experiments performed on the Moving Peaks Benchmark, we have confirmed the benefits of our strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garcia del Amo, I., Pelta, D., Gonzalez, J., Novoa, P.: An analysis of particle properties on a multi-swarm pso for dynamic optimization problems. In: CAEPIA-TTIA (2009)

    Google Scholar 

  2. Angeline, P.: Tracking extrema in dynamic environments. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 335–345. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing: an international journal 7, 109–124 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)

    Article  Google Scholar 

  5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1875–1882. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  6. Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization problems. In: Tsutsui, S., Ghosh, A. (eds.) Theory and Application of Evolutionary Computation: Recent Trends, pp. 239–262. Springer, Heidelberg (2002)

    Google Scholar 

  7. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  8. Dasgupta, D., Mcgregor, D.: Nonstationary function optimization using the structured genetic algorithm. In: Parallel Problem Solving From Nature, pp. 145–154. Elsevier, Amsterdam (1992)

    Google Scholar 

  9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science MHS 1995, pp. 39–43. IEEE Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995), doi:10.1109/ICNN.1995.488968, http://dx.doi.org/10.1109/ICNN.1995.488968 ,

  11. Parrott, D., Li, X.: A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In: IEEE Congress on Evolutionary Computation, pp. 98–103 (2004)

    Google Scholar 

  12. Pelta, D., Sancho-Royo, A., Cruz, C., Verdegay, J.L.: Using memory and fuzzy rules in a co-operative multi-thread strategy for optimization. Information Sciences 176(13), 1849–1868 (2006)

    Article  Google Scholar 

  13. Pelta, D., Cruz, C., Verdegay, J.: Simple control rules in a cooperative system for dynamic optimization problems. International Journal of General Systems 38(7), 701–717 (2009)

    Article  MATH  Google Scholar 

  14. Xiangwei, Z., Hong, L.: A different topology multi-swarm pso in dynamic environment. In: IEEE International Symposium on IT in Medicine & Education, vol. 1, pp. 790–795 (2009), doi:10.1109/ITIME.2009.5236313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Novoa-Hernández, P., Pelta, D.A., Corona, C.C. (2010). Improvement Strategies for Multi-swarm PSO in Dynamic Environments. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12538-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12537-9

  • Online ISBN: 978-3-642-12538-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics