Skip to main content

A Parallel Algorithm for Computing the Spectrum of CH\(_5^+\)

  • Conference paper
High Performance Computing Systems and Applications (HPCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5976))

  • 1326 Accesses

Abstract

We present a parallelized contracted basis-iterative calculation of vibrational energy levels of CH\(_5^+\) (a 12D calculation). We use Radau polyspherical coordinates and basis functions that are products of eigenfunctions of bend and stretch Hamiltonians. The basis functions have amplitude in all of the 120 equivalent minima. Many low-lying levels are well converged. A new parallelization scheme is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marx, D., Parrinello, M.: Structural quantum effects and three-center two-electron bonding in CH\(_5^+\). Nature (London) 375, 216 (1995)

    Article  Google Scholar 

  2. White, E.T., Tang, J., Oka, T.: CH\(_5^+\): The Infrared Spectrum Observed. Science 284, 135 (1999)

    Article  Google Scholar 

  3. Huang, X., McCoy, A.B., Bowman, J.M., Johnson, L.M., Savage, C., Dong, F., Nesbitt, D.J.: Quantum Deconstruction of the Infrared Spectrum of CH5\(_5^+\). Science 311, 60 (2006)

    Article  Google Scholar 

  4. Wang, X.-G., Carrington Jr., T.: Vibrational energy levels of CH\(_5^+\). J. Chem. Phys. 129, 234102 (2008)

    Article  Google Scholar 

  5. East, A.L.L., Kolbuszewski, M., Bunker, P.R.: Ab Initio Calculation of the Rotational Spectrum of CH\(_5^+\) and CD\(_5^+\). J. Phys. Chem. A 101, 6746 (1997)

    Article  Google Scholar 

  6. Jin, Z., Braams, B.J., Bowman, J.M.: An ab Initio Based Global Potential Energy Surface Describing CH\(_5^+\) \(\longrightarrow\) CH\(_3^+\) + H2. J. Phys. Chem. A 110, 1569 (2006)

    Article  Google Scholar 

  7. Bramley, M.J., Carrington Jr., T.: A general discrete variable method to calculate vibrational energy levels of three- and four-atom molecules. J. Chem. Phys. 99, 8519 (1993)

    Article  Google Scholar 

  8. Wang, X.-G., Carrington Jr., T.: New ideas for using contracted basis functions with a Lanczos eigensolver for computing vibrational spectra of molecules with four or more atoms. J. Chem. Phys. 117, 6923–6934 (2002)

    Article  Google Scholar 

  9. Wang, X.-G., Carrington Jr., T.: A contracted basis-Lanczos calculation of the vibrational levels of methane: solving the Schroedinger equation in nine dimensions. J. Chem. Phys. 119, 101–117 (2003)

    Article  Google Scholar 

  10. Paige, C.C.: Computational variants of the Lanczos method for the eigenvalue problem. J. Inst. Math. Appl. 10, 373–381 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cullum, J.K., Willoughby, R.A.: Lanczos algorithms for large symmetric eigenvalue computations. Theory, vol. 1. Birkhauser, Boston (1985)

    MATH  Google Scholar 

  12. The size of the even basis with l max  = m max = 18 is about 215 million. For this basis, 20 quadrature points are used for the θ coordinates and 40 for the φ coordinates

    Google Scholar 

  13. Wang, X.-G., Carrington Jr., T.: A finite basis representation Lanczos calculation of the bend energy levels of methane. J. Chem. Phys. 118, 6946 (2003)

    Article  Google Scholar 

  14. Bramley, M.J., Carrington Jr., T.: Calculation of triatomic vibrational eigenstates: Product or contracted basis sets, Lanczos or conventional eigensolvers? What is the most efficient combination? J. Chem. Phys. 101, 8494 (1994)

    Article  Google Scholar 

  15. Bunker, P.R., Jensen, P.: Molecular Symmetry and Spectroscopy. NRC Research Press, Ottawa (1998)

    Google Scholar 

  16. Wang, X.-G., Carrington Jr., T.: A symmetry-adapted Lanczos method for calculating energy levels with different symmetries from a single set of iterations. J. Chem. Phys. 114, 1473 (2001)

    Article  Google Scholar 

  17. Clarke, L.J., Štich, I., Payne, M.C.: Large-scale ab initio total energy calculations on parallel computers. Comp. Phys. Comm. 72, 14 (1992)

    Article  Google Scholar 

  18. Haynes, P., Côté, M.: Parallel fast Fourier transforms for electronic structure calculations. Comp. Phys. Comm. 130, 130 (2000)

    Article  MATH  Google Scholar 

  19. Wei, H., Carrington Jr., T.: The discrete variable representation for a triatomic Hamiltonian in bond length-bond angle coordinates. J. Chem. Phys. 97, 3029 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, XG., Carrington, T. (2010). A Parallel Algorithm for Computing the Spectrum of CH\(_5^+\) . In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds) High Performance Computing Systems and Applications. HPCS 2009. Lecture Notes in Computer Science, vol 5976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12659-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12659-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12658-1

  • Online ISBN: 978-3-642-12659-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics