Skip to main content

Megasomes in Leishmania

  • Chapter
  • First Online:
Structures and Organelles in Pathogenic Protists

Part of the book series: Microbiology Monographs ((MICROMONO,volume 17))

  • 754 Accesses

Abstract

Leishmaniasis is a serious public health problem in the whole world. There are various forms of the disease that are caused by parasites of the genus Leishmania. Leishmaniasis is transmitted by phlebotomine sandflies and two forms of the parasite exist, the amastigote form that occurs in the mammalian host and the promastigote form found in the insect. Leishmania protein trafficking is not fully understood, but there seems to exist a classic pathway. One striking aspect of this pathway is the existence of very large lysosome-like structures in the Leishmania mexicana complex, called megasomes. These organelles were found in both axenic and lesion amastigotes and contain large amounts of lysosomal hydrolases, including cysteine proteinases, that are frequently used as a megasomal markers. There is plenty of evidence for the importance of lysosomes for Leishmania virulence and survival, suggesting that the resident enzymes and cellular targeting mechanisms might be good targets for control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberio SO, Dias SS, Faria FP, Mortara RA, Barbiéri CL, Freymüller Haapalainen E (2004) Ultrastructural and cytochemical identification of megasome in Leishmania (Leishmania) chagasi. Parasitol Res 92:246–254

    Article  PubMed  Google Scholar 

  • Alexander J, Vickerman K (1975) Fusion of host cell secondary lysosomes with the parasitophorous vacuole of Leishmania mexicana-infected macrophages. J Protozool 22:502–508

    PubMed  CAS  Google Scholar 

  • Antoine JC, Jouanne C, Ryter A (1989) Megasomes as the targets of leucine methyl ester in Leishmania amazonensis amastigotes. Parasitology 99(Pt 1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Antoine JC, Lang T, Prina E, Courret N, Hellio R (1999) H-2M molecules, like MHC class II molecules, are targeted to parasitophorous vacuoles of Leishmania-infected macrophages and internalized by amastigotes of L. amazonensis and L. mexicana. J Cell Sci 112:2559–2570

    PubMed  CAS  Google Scholar 

  • Antoine JC, Prina E, Courret N, Lang T (2004) Leishmania spp.: on the interactions they establish with antigen-presenting cells of their mammalian hosts. Adv Parasitol 58:1–68

    Article  PubMed  Google Scholar 

  • Balber AE, Bangs JD, Jones SM, Proia RL (1979) Inactivation or elimination of potentially trypanolytic, complement-activating immune complexes by pathogenic trypanosomes. Infect Immun 24:617–627

    PubMed  CAS  Google Scholar 

  • Besteiro S, Williams RA, Morrison LS, Coombs GH, Mottram JC (2006) Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem 281:11384–11396

    Article  PubMed  CAS  Google Scholar 

  • Boukai LK, McMahon-Pratt D, Traub-Cseko YM (2000a) Evidence for a recent mutation giving rise to a truncated copy of a cysteine proteinase gene in Leishmania pifanoi. Parasitol Int 49:301–307

    Article  PubMed  CAS  Google Scholar 

  • Boukai LK, Costa-Pinto D, Soares MJ, McMahon-Pratt D, Traub-Cseko YM (2000b) Trafficking of cysteine proteinases to Leishmania lysosomes: lack of involvement of glycosylation. Mol Biochem Parasitol 107:321–325

    Article  PubMed  CAS  Google Scholar 

  • Bray RS (1974) Leishmania. Annu Rev Microbiol 28:189–217

    Article  PubMed  CAS  Google Scholar 

  • Brooks DR, Tetley L, Coombs GH, Mottram JC (2000) Processing and trafficking of cysteine proteases in Leishmania mexicana. J Cell Sci 113:4035–4041

    PubMed  CAS  Google Scholar 

  • Cazzullo JJ, Hellman U, Couso R, Parodi AJ (1990) Amino acid and carbohydrate composition of a lysosomal cysteine proteinase from Trypanosoma cruzi. Absence of phosphorylated mannose residues. Mol Biochem Parasitol 38:41–48

    Article  Google Scholar 

  • Cazzulo JJ (2002) Proteinases of Trypanosoma cruzi: patential targets for the chemotherapy of Chagas disease. Curr Top Med Chem 2:1261–1271

    Article  PubMed  CAS  Google Scholar 

  • Clayton C, Hausler T, Blattner J (1995) Protein trafficking in kinetoplastid protozoa. Microbiol Rev 59:325–344

    PubMed  CAS  Google Scholar 

  • Cohen-Freue G, Holzer TR, Forney JD, McMaster WR (2007) Global gene expression in Leishmania. Int J Parasitol 37:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Coombs GH (1986) Three-dimentional structure of Leishmania amastigotes as revealed by computer-aided reconstruction from serial section. Parasitology 92:13–23

    Article  PubMed  Google Scholar 

  • Coppens I, Opperdoes FR, Courtoy PJ, Baudhuin P (1987) Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool 34:465–473

    PubMed  CAS  Google Scholar 

  • Costa-Pinto D, Trindade LS, McMahon-Pratt D, Traub-Cseko YM (2001) Cellular traficking in trypanosomatids: a new target for therapies? Int J Parasitol 31:537–544

    Article  CAS  Google Scholar 

  • Duboise SM, Vannier-Santos MA, Costa-Pinto D, Rivas L, Pan AA, Traub-Cseko Y, de Souza W, McMahon-Pratt D (1994) The biosynthesis, processing, and immunolocalization of Leishmania pifanoi amastigote cysteine proteinase. Mol Biochem Parasitol 68:119–132

    Article  PubMed  CAS  Google Scholar 

  • Dumas C, Chow C, Muller M, Papadopoulou B (2006) A novel class of developmentally regulated noncoding RNAs in Leishmania. Eukaryot Cell 5:2033–2046

    Article  PubMed  CAS  Google Scholar 

  • Engel JC, Doyle PS, Palmer J, Hsieh I, Bainton DF, McKerrow JH (1998) Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi. J Cell Sci 111:597–606

    PubMed  CAS  Google Scholar 

  • Engstler M, Thilo L, Weise F, Grunfelder CG, Schwarz H, Boshart M, Overath P (2004) Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci 117:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Eperon S, McMahon-Pratt D (1989) Extracellular amastigote-like forms of Leishmania panamensis and L. braziliensis. II. Stage- and species-specific monoclonal antibodies. J Protozool 36:510–518

    PubMed  CAS  Google Scholar 

  • Ferreira JH, Gentil LG, Dias SS, Fedeli CE, Katz S, Barbieri CL (2008) Immunization with the cysteine proteinase Ldccys1 gene from Leishmania (Leishmania) chagasi and the recombinant Ldccys1 protein elicits protective immune responses in a murine model of visceral leishmaniasis. Vaccine 26:677–685

    Article  PubMed  CAS  Google Scholar 

  • Fricker SP, Mosi RM, Cameron BR, Baird I, Zhu Y, Anastassov V, Cox J, Doyle PS, Hansell E, Lau G, Langille J, Olsen M, Qin L, Skerlj R, Wong RS, Santucci Z, McKerrow JH (2008) Metal compounds for the treatment of parasitic diseases. J Inorg Biochem 102:1839–1845

    Article  PubMed  CAS  Google Scholar 

  • Fruth U, Solioz N, Louis JA (1993) Leishmania major interferes with antigen presentation by infected macrophages. J Immunol 150:1857–1864

    PubMed  CAS  Google Scholar 

  • Galvao-Quintao L, Alfieri SC, Ryter A, Rabinovitch M (1990) Intracellular differentiation of Leishmania amazonensis promastigotes to amastigotes: presence of megasomes, cysteine proteinase activity and susceptibility to leucine-methil ester. Parasitology 101:7–13

    Article  PubMed  CAS  Google Scholar 

  • Ghedin E, Debrabant A, Engel JC, Dwyer DM (2001) Secretory and endocytic pathways converge in a dynamic endosomal system in a primitive protozoan. Traffic 2:175–188

    Article  PubMed  CAS  Google Scholar 

  • Hager KM, Pierce MA, Moore DR, Tytler EM, Esko JD, Hajduk SL (1994) Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes. J Cell Biol 126:155–167

    Article  PubMed  CAS  Google Scholar 

  • Hall BS, Smith E, Langer W, Jacobs LA, Goulding D, Field MC (2005) Developmental variation in Rab11-dependent trafficking in Trypanosoma brucei. Eukaryot Cell 4:971–980

    Article  PubMed  CAS  Google Scholar 

  • Handman E, Hocking RE (1982) Stage-specific, strain-specific, and cross-reactive antigens of Leishmania species identified by monoclonal antibodies. Infect Immun 37:28–33

    PubMed  CAS  Google Scholar 

  • Harrington JM, Howell S, Hajduk SL (2009) Membrane permeabilization by trypanosome lytic factor, a cytolytic human high density lipoprotein. J Biol Chem 284:13505–13512

    Article  PubMed  CAS  Google Scholar 

  • Hide M, Banuls AL (2008) Polymorphisms of cpb multicopy genes in the Leishmania (Leishmania) donovani complex. Trans R Soc Trop Med Hyg 102:105–106

    Article  PubMed  CAS  Google Scholar 

  • Huete-Perez JA, Engel JC, Brinen LS, Mottram JC, McKerrow JH (1999) Protease trafficking in two primitive eukaryotes is mediated by a prodomain protein motif. J Biol Chem 274:16249–16256

    Article  PubMed  CAS  Google Scholar 

  • Ilgoutz SC, Zawadski JL, Ralton JE, McConville MJ (1999a) Evidence that free GPI glycolipids are essential from growth of L. mexicana. EMBO J 18:2746–2755

    Article  PubMed  CAS  Google Scholar 

  • Ilgoutz SC, Mullin KA, Southwell BR, McConville MJ (1999b) Glycosylphosphatidylinositol biosynthetic enzymes are localized to a stable tubular subcompartment of the endoplasmic reticulum in Leishmania mexicana. EMBO J 18:3643–3654

    Article  PubMed  CAS  Google Scholar 

  • Jaffe CL, Rachamim N (1989) Amastigote stage-specific monoclonal antibodies against Leishmania major. Infect Immun 57:3770–3777

    PubMed  CAS  Google Scholar 

  • Kar S, Soong L, Colmenares M, Goldsmith-Pestana K, McMahon-Pratt D (2000) The immunologically protective P-4 antigen of Leishmania amastigotes. A developmentally regulated single strand-specific nuclease associated with the endoplasmic reticulum. J Biol Chem 275:37789–37797

    Article  PubMed  CAS  Google Scholar 

  • Kelly RJ, Alexander DL, Cowan C, Balber AE, Bangs JD (1999) Molecular cloning of p67, a lysosomal membrane glycoprotein from Trypanosoma brucei. Mol Biochem Parasitol 98:17–28

    Article  Google Scholar 

  • Khoshgoo N, Zahedifard F, Azizi H, Taslimi Y, Alonso MJ, Rafati S (2008) Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals. Vaccine 26:5822–5829

    Article  PubMed  CAS  Google Scholar 

  • Kima PE, Soong L, Chicharro C, Ruddle NH, McMahon-Pratt D (1996) Leishmania-infected macrophages sequester endogenously synthesized parasite antigens from presentation to CD4+ T cells. Eur J Immunol 26:3163–3169

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18

    Article  PubMed  CAS  Google Scholar 

  • Knuepfer E, Stierhof YD, McKean PG, Smith DF (2001) Characterization of a differentially expressed protein that shows an unusual localization to intracellular membranes in Leishmania major. Biochem J 356:335–344

    Article  PubMed  CAS  Google Scholar 

  • Kweider M, Lemesre JL, Darcy F, Kusnierz JP, Santoro F (1987) Infectivity of Leishmania braziliensis promastigotes is dependent on the increasing expression of a 65, 000 dalton surface antigen. J Immunol 138:299–305

    PubMed  CAS  Google Scholar 

  • Landfear SM, Ignatushchenko M (2001) The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol 115:1–17

    Article  PubMed  CAS  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  PubMed  CAS  Google Scholar 

  • Mackey ZB, O'Brien TC, Greenbaum DC, Blank RB, McKerrow JH (2004) A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 279:48426–48433

    Article  PubMed  CAS  Google Scholar 

  • Mallari JP, Shelat AA, Obrien T, Caffrey CR, Kosinski A, Connelly M, Harbut M, Greenbaum D, McKerrow JH, Guy RK (2008) Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. J Med Chem 51:545–552

    Article  PubMed  CAS  Google Scholar 

  • Marin-Villa M, Sampaio-Morgado G, Roy D, Traub-Cseko YM (2008a) Leishmania lysosomal targeting signal is recognized by yeast and not by mammalian cells. Parasitol Res 103:983–988

    Article  PubMed  Google Scholar 

  • Marin-Villa M, Vargas-Inchaustegui D, Chaves S, Tempone A, Dutra J, Soares M, Ueda-Nakamura T, Mendonça S, Rossi-Bergmann B, Soong L, Traub-Cseko YMT (2008b) The C-terminal extension of Leishmania pifanoi amastigote-specific cysteine proteinase Lpcys2: a putative function in macrophage infection. Mol Biochem Parasitol 162:52–59

    Article  PubMed  CAS  Google Scholar 

  • Martinez E, Seguí-Real B, Silles E, Mazón MJ, Sandoval IV (1999) The propeptide of vacuolar aminopeptidase I is necessary and sufficient to target the fluorescent protein GFP to the vacuole of yeast by the Ccvt pathway. Mol Microbiol 33:52–62

    Article  PubMed  CAS  Google Scholar 

  • McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD (2002a) Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66:122–154

    Article  PubMed  CAS  Google Scholar 

  • McConville MJ, Ilgoutz SC, Teasdale RD, Foth BJ, Matthews A, Mullin KA, Gleeson PA (2002b) Targeting of the GRIP domain to the trans-Golgi network is conserved from protists to animals. Eur J Cell Biol 81:485–495

    Article  PubMed  CAS  Google Scholar 

  • McKerrow JH (1999) Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action. Int J Parasitol 29:833–837

    Article  PubMed  CAS  Google Scholar 

  • Medina-Acosta E, Karess RE, Schwartz H, Russell DG (1989) The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol 37:263–273

    Article  PubMed  CAS  Google Scholar 

  • Morales MA, Watanabe R, Laurent C, Lenormand P, Rousselle JC, Namane A, Späth GF (2008) Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8:350–363

    Article  PubMed  CAS  Google Scholar 

  • Mottram JC, Coombs GH (1985) Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol 59:151–160

    Article  PubMed  CAS  Google Scholar 

  • Mottram JC, Souza AE, Hutchison JE, Carter R, Frame MJ, Coombs GH (1996) Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci U S A 93:6008–6013

    Article  PubMed  CAS  Google Scholar 

  • Mottram JC, Frame MJ, Brooks DR, Tetley L, Hutchison JE, Souza AE, Coombs GH (1997) The multiple cpb cysteine proteinase genes of Leishmania mexicana encode isoenzymes that differ in their stage regulation and substrate preferences. J Biol Chem 272:14285–14293

    Article  PubMed  CAS  Google Scholar 

  • Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 7:375–381

    Article  PubMed  CAS  Google Scholar 

  • Mullin KA, Foth B, Ilgoutz SM, Callaghan J, McFadden GM, McConville MJ (2001) Regulated degradation of ER membrane proteins in a novel tubular lysosome in Leishmania mexicana. Mol Biol Cell 12:2364–2377

    PubMed  CAS  Google Scholar 

  • Natesan SK, Peacock L, Matthews K, Gibson W, Field MC (2007) Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell 6:2029–2037

    Article  PubMed  CAS  Google Scholar 

  • Ni X, Canuel M, Morales CR (2006) The sorting and trafficking of lysosomal proteins. Histol Histopathol 21:899–913

    PubMed  CAS  Google Scholar 

  • Nkemgu NJ, Grande R, Hansell E, McKerrow JH, Caffrey CR, Steverding D (2003) Improved trypanocidal activities of cathepsin L inhibitors. Int J Antimicrob Agents 22:155–159

    Article  PubMed  CAS  Google Scholar 

  • Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18:293–305

    Article  PubMed  CAS  Google Scholar 

  • Overath P, Stierhof YD, Wiese M (1997) Endocytosis and secretion in trypanosomatid parasites – tumultuous traffic in a pocket. Trends Cell Biol 7:27–33

    Article  PubMed  CAS  Google Scholar 

  • Pal A, Hall BS, Jeffries TR, Field MC (2003) Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochem J 374:443–451

    Article  PubMed  CAS  Google Scholar 

  • Pamer EG, So M, Davis CE (1989) Identification of a developmentally regulated cysteine protease of Trypanosoma brucei. Mol Biochem Parasitol 33:27–32

    Article  PubMed  CAS  Google Scholar 

  • Pan AA, McMahon-Pratt D (1988) Monoclonal antibodies specific for the amastigote stage of Leishmania pifanoi. I. Characterization of antigens associated with stage- and species-specific determinants. J Immunol 140:2406–2414

    PubMed  CAS  Google Scholar 

  • Pan AA, Pan SC (1986) Leishmania mexicana: comparative fine structure of amastigotes and promastigotes in vitro and in vivo. Exp Parasitol 62:254–265

    Article  PubMed  CAS  Google Scholar 

  • Parodi AJ (1995) The presence of complex-type oligosaccharides at the C-terminal domain glycosylation site of some molecules of cruzipain. Mol Biochem Parasitol 69:247–255

    Article  PubMed  CAS  Google Scholar 

  • Pays E, Vanhollebeke B, Vanhamme L, Paturiaux-Hanocq F, Nolan DP, Perez-Morga D (2006) The trypanolytic factor of human serum. Nat Rev Microbiol 4:477–486

    Article  PubMed  CAS  Google Scholar 

  • Pimenta PF, Saraiva EM, Sacks DL (1991) The comparative fine structure and surface glycoconjugate expression of three life stage of Leishmania major. Exp Parasitol 72:191–204

    Article  PubMed  CAS  Google Scholar 

  • Piper RC, Bryant NJ, Stevens TH (1997) The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 138:531–545

    Article  PubMed  CAS  Google Scholar 

  • Pral EM, Bijovsky AT, Balanco JM, Alfieri SC (1993) Leishmania mexicana: proteinase activities and megasomes in axenically cultivated amastigote-like forms. Exp Parasitol 77:62–73

    Article  PubMed  CAS  Google Scholar 

  • Pral EM, da Moitinho ML, Balanco JM, Teixeira VR, Milder RV, Alfieri SC (2003) Growth phase and medium pH modulate the expression of proteinase activities and the development of megasomes in axenically cultivated Leishmania (Leishmania) amazonensis amastigote-like organisms. J Parasitol 89:35–43

    Article  PubMed  CAS  Google Scholar 

  • Pupkis MF, Tetley L, Coombs GH (1986) Leishmania mexicana: amastigote hydrolases in unusual lysosomes. Exp Parasitol 62:29–39

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitch M, Zilberfarb V, Ramazeilles C (1986) Destruction of Leishmania mexicana amazonensis amastigotes within macrophages by lysosomotropic amino acid esters. J Exp Med 163:520–535

    Article  PubMed  CAS  Google Scholar 

  • Rabinovitch M, Zilberfarb V, Pouchelet M (1987) Leishania mexicana: destruction of isolated amastigotes by aminoacid esters. Am Trop Med Hyg 36:288–293

    CAS  Google Scholar 

  • Rafati S, Baba AA, Bakhshayesh M, Vafa M (2000) Vaccination of BALB/c mice with Leishmania major amastigote-specific cysteine proteinase. Clin Exp Immunol 120:134–138

    Article  PubMed  CAS  Google Scholar 

  • Ramazeilles C, Rabinovitch M (1989) Leishmania amazonensis: uptake and hydrolysis of 3H-amino acid methyl esters by isolated amastigotes. Exp Parasitol 68:135–143

    Article  PubMed  CAS  Google Scholar 

  • Raper J, Fung R, Ghiso J, Nussenzweig V, Tomlinson S (1999) Characterization of a novel trypanosome lytic factor from human serum. Infect Immun 67:1910–1916

    PubMed  CAS  Google Scholar 

  • Rifkin MR (1978) Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc Natl Acad Sci U S A 75:3450–3454

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig D, Smith D, Myler PJ, Olafson RW, Zilberstein D (2008) Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics 8:1843–1850

    Article  PubMed  CAS  Google Scholar 

  • Rudzinska MA, D’Alesandro PA, Trager W (1964) The fine structure of Leishmania to leptomonad transformation. J Protozool 11:166–191

    PubMed  CAS  Google Scholar 

  • Sacks DL (2001) Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol 3:189–196

    Article  PubMed  CAS  Google Scholar 

  • Sant'Anna C, Pereira MG, Lemgruber L, de Souza W, Cunha e Silva NL (2008) New insights into the morphology of Trypanosoma cruzi reservosome. Microsc Res Tech 71:599–605

    Article  PubMed  Google Scholar 

  • Schneider P, Rosat JP, Bouvier J, Louis J, Bordier C (1992) Leishmania major: differential regulation of the surface metalloprotease in amastigote and promastigote stages. Exp Parasitol 75:196–206

    Article  PubMed  CAS  Google Scholar 

  • Selzer PM, Chen X, Chan VJ, Cheng M, Kenyon GL, Kuntz ID, Sakanari JA, Cohen FE, McKerrow JH (1997) Leishmania major: molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors. Exp Parasitol 87:212–221

    Article  PubMed  CAS  Google Scholar 

  • Selzer PM, Pinel S, Hsieh I, Ugele B, Chan VJ, Engel JC, Bogyo M, Russell DG, Sakanari JA, McKerrow JH (1999) Cysteine protease inhibitors as chemotherapy: lessons from a parasite target. Proc Natl Acad Sci U S A 96:11015–11022

    Article  PubMed  CAS  Google Scholar 

  • Shaw J (2007) The leishmaniases-survival and expansion in a changing world. A mini-review. Mem Inst Oswaldo Cruz 102:541–547

    Article  PubMed  Google Scholar 

  • Shimamura M, Hager KM, Hajduk SL (2001) The lysosomal targeting and intracellular metabolism of trypanosome lytic factor by Trypanosoma brucei brucei. Mol Biochem Parasitol 115:227–237

    Article  PubMed  CAS  Google Scholar 

  • Siles R, Chen SE, Zhou M, Pinney KG, Trawick ML (2006) Design, synthesis, and biochemical evaluation of novel cruzain inhibitors with potential application in the treatment of Chagas' disease. Bioorg Med Chem Lett 16:4405–4409

    Article  PubMed  CAS  Google Scholar 

  • Subba Raju BV, Singh R, Sreenivas G, Singh S, Salotra P (2008) Genetic fingerprinting and identification of differentially expressed genes in isolates of Leishmania donovani from Indian patients of post-kala-azar dermal leishmaniasis. Parasitology 135:23–32

    Article  PubMed  CAS  Google Scholar 

  • Traub-Cseko YM, Duboise SM, McMahon-Pratt D (1993) Identification of two cysteine proteinase genes of Leishmania pifanoi axenic amastigotes using PCR. Mol Biochem Parasitol 57:101–116

    Article  PubMed  CAS  Google Scholar 

  • Ueda-Nakamura T, Attias M, de Souza W (2001) Megasome biogenesis in Leishmania amazonensis: a morphometric and cytochemical study. Parasitol Res 87:89–97

    Article  PubMed  CAS  Google Scholar 

  • Ueda-Nakamura T, Sampaio MCR, Cunha-e-Silva NL, Traub-Cseko YM, de Souza W (2002) Expression and processing of megasome cysteine proteinases during Leishmania amazonensis differentiation. Parasitol Res 88:332–337

    Article  PubMed  Google Scholar 

  • Ueda-Nakamura T, Attias M, de Souza W (2007) Comparative analysis of megasomes in members of the Leishmania mexicana complex. Res Microbiol 158:456–462

    Article  PubMed  CAS  Google Scholar 

  • Valls LA (1987) Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48:887–897

    Article  PubMed  CAS  Google Scholar 

  • Vanhollebeke B, Nielsen MJ, Watanabe Y, Truc P, Vanhamme L, Nakajima K, Moestrup SK, Pays E (2007) Distinct roles of haptoglobin-related protein and apolipoprotein L-I in trypanolysis by human serum. Proc Natl Acad Sci U S A 104:4118–4123

    Article  PubMed  CAS  Google Scholar 

  • von Figura K (1991) Molecular recognition and targeting of lysosomal proteins. Curr Opin Cell Biol 3:642–646

    Article  Google Scholar 

  • Walker J, Vasquez JJ, Gomez MA, Drummelsmith J, Burchmore R, Girard I, Ouellette M (2006) Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Mol Biochem Parasitol 147:64–73

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, McConville MJ (2002) Developmental changes in lysosome morphology and function Leishmania parasites. Int J Parasitol 32:1435–1445

    Article  PubMed  CAS  Google Scholar 

  • Weise F, Stierhof YD, Kuhn C, Overath P (2000) Distribution of GPI-anchored proteins in the protozoan parasite leishmania, based on an improved ultrastructural description using high-pressure frozen cells. J Cell Sci 113:4587–4603

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yara M. Traub-Csekö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McMahon-Pratt, D., Ueda-Nakamura, T., Traub-Csekö, Y.M. (2010). Megasomes in Leishmania . In: de Souza, W. (eds) Structures and Organelles in Pathogenic Protists. Microbiology Monographs, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12863-9_6

Download citation

Publish with us

Policies and ethics