Skip to main content

A Hybrid Scheme to Solve the Protein Structure Prediction Problem

  • Conference paper
Advances in Bioinformatics

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 74))

Abstract

This paper proposes an approach to the protein structure prediction (PSP) problem that inserts solutions provided by template-modeling procedures as individuals in the population of a multi-objective evolutionary algorithm. This way, our procedure represents a hybrid approach that takes advantage of previous knowledge about the known protein structures to improve the effectiveness of an ab initio procedure for the PSP problem. Moreover, the procedure benefits from a parallel and distributed implementation that allows faster and wider exploration of the conformation space. The experimental results obtained from the present implementation of our procedure show improvements with respect to previously proposed procedures in the proteins selected as benchmarks from the CASP8 set (up to 28% of RMSD improvement with respect to TASSER).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cutello, V., Narcisi, G., Nicosia, G.: A multi-objetive evolutionary approach to the protein structure prediction problem. J. R. Soc. Interface 3, 139–151 (2006)

    Article  Google Scholar 

  2. Zhang, Y., Skolnick, J.: The protein structure prediction problem could be solved using the current pdb library. Proc. Natl. Acad. Sci. USA 102, 1029–1034 (2005)

    Article  Google Scholar 

  3. Handl, J., Kell, D., Knowles, J.: Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 4(2), 279–292 (2007)

    Article  Google Scholar 

  4. Rychlewski, L., Jaroszewski, L., Li, W., Godzik, A.: Comparison of sequence profiles. strategies for structural predictions using sequence information. Protein Science 9, 232–241 (2000)

    Google Scholar 

  5. Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein structure prediction using rosetta. Methods in Enzymology 383, 66–93 (2004)

    Article  Google Scholar 

  6. Raman, S., et al.: Advances in rosetta protein structure prediction on massivelly parallel systems. IBM J. Res. & Dev. 52(1/2) (2008)

    Google Scholar 

  7. Taufer, M., An, C., Kerstens, A., Brooks, C.: Predictor@home: A ’protein structure prediction supercomputer’ based on global computing. IEEE Transactions on Parallel and Distributed Systems 17(8), 786–796 (2006)

    Article  Google Scholar 

  8. Bradley, P., Misura, K., Baker, D.: Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005)

    Article  Google Scholar 

  9. Anderson, D.: Boinc: A system for public-resource computing and storage. In: Proc. Fifth IEEE/ACM Int’l Workshop Grid Computing (2004)

    Google Scholar 

  10. Sun, Z., Jiang, B.: Patterns and conformations of commonly occurring supersecondary structures (basic motifs) in protein data bank. Journal of Protein Chemistry 15(7) (1996)

    Google Scholar 

  11. Dunbrack, R.: Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol. 12, 431–440 (2002)

    Article  Google Scholar 

  12. Wu, S., Skolnick, J., Zhang, Y.: Ab initio modelling of small proteins by iterative tasser simulations. BMC Biol. 5 (2007)

    Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. on Evol. Comp. 6, 182–197 (2002)

    Article  Google Scholar 

  14. Day, R., Zydallis, J., Lamont, G.: Solving the protein structure prediction problem through a multiobjective genetic algorithm. Nanotech 2, 32–35 (2002)

    Google Scholar 

  15. Tantar, A.-A., Melab, N., Talbi, E.-G., Parent, B., Horvath, D.: A parallel hybrid genetic algorithm for protein structure prediction on the computational grid. Future Generation Computer Systems 23, 398–409 (2007)

    Article  Google Scholar 

  16. Veldhuizen, D.V., Zidallis, J., Lamont, G.: Considerations in engineering parallel multiobjetive evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2) (2003)

    Google Scholar 

  17. Calvo, J., Ortega, J., Anguita, M.: Comparison of parallel multi-objective approaches to protein structure prediction. The Journal of Supercomputing (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calvo, J.C., Ortega, J., Anguita, M. (2010). A Hybrid Scheme to Solve the Protein Structure Prediction Problem. In: Rocha, M.P., Riverola, F.F., Shatkay, H., Corchado, J.M. (eds) Advances in Bioinformatics. Advances in Intelligent and Soft Computing, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13214-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13214-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13213-1

  • Online ISBN: 978-3-642-13214-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics