Skip to main content

Neural Networks for Solving the Superposition Problem Using Approximation Method and Adaptive Learning Rate

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2010)

Abstract

An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is implemented for the approximation of smooth batch data containing input-output of the hidden neurons and the final neural output of the network. The training set is associated to the adjustable parameters of the network by weight equations. Then we have obtained the exact input weight of the nonlinear equations and the approximated output weight of the linear equations using the conjugate gradient method with an adaptive learning rate. Using a multi-agents system as different kinds of energies for the plant growth, one can predict the height of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrari, S., Stengel, R.F.: Smooth Function Approximation Using Neural Networks. IEEE Trans. Neural Netw. 16(1), 24–38 (2005)

    Article  Google Scholar 

  2. Rumelhart, D., Inton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  3. Wolfe, P.H.: Convergence conditions for ascend methods. SIAM Review 11, 226–235 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  5. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation. Neural Netw. 1(4), 295–308 (1988)

    Article  Google Scholar 

  6. Rigler, A.K., Irvine, J.M., Vogl, T.P.: Rescaling of variables in back-propagation learning. Neural Netw. 3(5), 561–573 (1990)

    Article  Google Scholar 

  7. Kolmogorov, A.N.: On the representation of continuous function of several variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR 114, 953–956 (1957)

    MATH  MathSciNet  Google Scholar 

  8. Hornik, K., Stinchcombe, M., White, H.: Multi-layer feeforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  9. Baron, A.R.: Universal approximation bounds for superposition of a sigmoidal functions. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)

    Article  MathSciNet  Google Scholar 

  10. Vassiliev, F.L.: Numerical Methods for the optimization problems. Nauk, Moscow (1988) (in Russian)

    Google Scholar 

  11. Beklemichev, D.: Cours de géometrie analytique et d’algèbre linéaire. Editions Mir, Moscou (1988)

    Google Scholar 

  12. Bavrine, I.I.: High mathematics. Instruction, Moscow (1980) (in Russian)

    Google Scholar 

  13. Dagba, T.K., Adanhounmè, V., Adédjouma, S.A.: Modélisation de la croissance des plantes par la méthode d’apprentissage supervisé du neurone. In: Premier colloque de l’UAC des sciences, cultures et technologies, mathématiques, Abomey-Calavi, Benin, pp. 245–250 (2007)

    Google Scholar 

  14. Dembelé, J.-M., Cambier, C.: Modélisation multi-agents de systèmes physiques: application à l’érosion cotière. In: CARI 2006, Cotonou, Benin, pp. 223–230 (2006)

    Google Scholar 

  15. Fourcaud, T.: Analyse du comportement mécanique d’une plante en croissance par la méthode des éléments finis. PhD thesis, Université de Bordeaux 1, Talence, France (1995)

    Google Scholar 

  16. De Reffye, P., Edelin, C., Jaeger, M.: La modélisation de la croissance des plantes. La Recherche 20(207), 158–168 (1989)

    Google Scholar 

  17. Rostand-Mathieu, A.: Essai sur la modélisation des interactions entre la croissance et le développement d’une plante, cas du modèle greenlab. Ph.D thesis, Ecole Centrale de Paris, France (2006)

    Google Scholar 

  18. Wu, L., Le Dimet, F.-X., De Reffye, P., Hu, B.-G.: A new Mathematical Formulation for Plant Structure Dynamics. In: CARI 2006, Cotonou, Benin, pp. 353–360 (2006)

    Google Scholar 

  19. Deng, C., Xiong, F., Tan, Y., He, Z.: Sequential learning neural network and its application in agriculture. In: IEEE International Joint Conference on Neural Networks, vol. 1, pp. 221–225 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dagba, T.K., Adanhounmè, V., Adédjouma, S.A. (2010). Neural Networks for Solving the Superposition Problem Using Approximation Method and Adaptive Learning Rate. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2010. Lecture Notes in Computer Science(), vol 6071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13541-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13541-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13540-8

  • Online ISBN: 978-3-642-13541-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics