Skip to main content

Machine-Learning Based Co-adaptive Calibration: A Perspective to Fight BCI Illiteracy

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6076))

Included in the following conference series:

Abstract

“BCI illiteracy” is one of the biggest problems and challenges in BCI research. It means that BCI control cannot be achieved by a non-negligible number of subjects (estimated 20% to 25%). There are two main causes for BCI illiteracy in BCI users: either no SMR idle rhythm is observed over motor areas, or this idle rhythm is not attenuated during motor imagery, resulting in a classification performance lower than 70% (criterion level) already for offline calibration data. In a previous work of the same authors, the concept of machine learning based co-adaptive calibration was introduced. This new type of calibration provided substantially improved performance for a variety of users. Here, we use a similar approach and investigate to what extent co-adapting learning enables substantial BCI control for completely novice users and those who suffered from BCI illiteracy before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dornhege, G., del R. Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.): Toward Brain-Computer Interfacing. MIT Press, Cambridge (2007)

    Google Scholar 

  2. Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., Birbaumer, N.: Brain-computer communication: Unlocking the locked in. Psychol. Bull. 127(3), 358–375 (2001)

    Article  Google Scholar 

  3. del R. Millán, J., Renkens, F., Mouriño, J., Gerstner, W.: Non-invasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51(6), 1026–1033 (2004)

    Article  Google Scholar 

  4. Pfurtscheller, G., Neuper, C., Birbaumer, N.: Human Brain-Computer Interface. In: Riehle, A., Vaadia, E. (eds.) Motor Cortex in Voluntary Movements, pp. 367–401. CRC Press, New York (2005)

    Google Scholar 

  5. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  6. Dickhaus, T., Sannelli, C., Müller, K.R., Curio, G., Blankertz, B.: Predicting BCI performance to study BCI illiteracy. BMC Neuroscience 2009 10(Suppl. 1), 84 (2009) (in Press)

    Google Scholar 

  7. Shenoy, P., Krauledat, M., Blankertz, B., Rao, R.P.N., Müller, K.R.: Towards adaptive classification for BCI. J. Neural Eng. 3(1), 13–23 (2006)

    Article  Google Scholar 

  8. Vidaurre, C., Blankertz, B.: Towards a cure for BCI illiteracy: Machine-learning based co-adaptive learning. Brain Topography (2009) (open access)

    Google Scholar 

  9. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.R., Curio, G.: The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects. Neuroimage 37(2), 539–550 (2007)

    Article  Google Scholar 

  10. Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., Müller, K.R.: The Berlin Brain-Computer Interface: Accurate performance from first-session in BCI-naive subjects. IEEE Trans. Biomed. Eng. 55(10), 2452–2462 (2008)

    Article  Google Scholar 

  11. Vidaurre, C., Schlögl, A., Cabeza, R., Scherer, R., Pfurtscheller, G.: A fully on-line adaptive BCI. IEEE Trans. Biomed. Eng. 53(6), 1214–1219 (2006)

    Article  Google Scholar 

  12. McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalogr Clin. Neurophysiol. 103, 386–394 (1997)

    Article  Google Scholar 

  13. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)

    Article  Google Scholar 

  14. Vidaurre, C., Schlögl, A., Blankertz, B., Kawanabe, M., Müller, K.R.: Unsupervised adaptation of the LDA classifier for Brain-Computer Interfaces. In: Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course 2008, pp. 122–127. Verlag der Technischen Universität Graz (2008)

    Google Scholar 

  15. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar Anal. 88, 365–411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vidaurre, C., Krämer, N., Blankertz, B., Schlögl, A.: Time domain parameters as a feature for eeg-based brain computer interfaces. Neural Networks 22, 1313–1319 (2009)

    Article  Google Scholar 

  17. Kübler, A., Neumann, N., Wilhelm, B., Hinterberger, T., Birbaumer, N.: Predictability of brain-computer communication. Int. J. Psychophysiol. 18(2-3), 121–129 (2004)

    Article  Google Scholar 

  18. Dornhege, G., Blankertz, B., Curio, G., Müller, K.R.: Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms. IEEE Trans. Biomed. Eng. 51(6), 993–1002 (2004)

    Article  Google Scholar 

  19. Müller, K.R., Anderson, C.W., Birch, G.E.: Linear and non-linear methods for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 165–169 (2003)

    Article  Google Scholar 

  20. Müller, K.R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. J. Neurosci. Methods 167(1), 82–90 (2008)

    Article  Google Scholar 

  21. Sugiyama, M., Krauledat, M., Müller, K.R.: Covariate shift adaptation by importance weighted cross validation. Journal of Machine Learning Research 8, 1027–1061 (2007)

    MATH  Google Scholar 

  22. von Bünau, P., Meinecke, F.C., Király, F., Müller, K.R.: Finding stationary subspaces in multivariate time series. Physical Review Letters 103, 214101 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vidaurre, C., Sannelli, C., Müller, KR., Blankertz, B. (2010). Machine-Learning Based Co-adaptive Calibration: A Perspective to Fight BCI Illiteracy. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics