Skip to main content

Magnetic Materials

  • Chapter
  • First Online:
Induction Accelerators

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 1393 Accesses

Abstract

The magnetic material is a key element of the induction accelerator cell. The choice of material will generally involve a number of trade offs. Desirable properties of magnetic materials include high flux density (B s ), low coercive force (H c ), high permeability (μ), and low loss at high rates of magnetization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Faltens and E. Hartwig. Preliminary Hardware Concepts for an Electron Ring Accelerator. IEEE Trans. Nucl. Sci., NS-18:484–487, 1971. (Proceedings of the 1971 Particle Accelerator Conference, Chicago, IL, 1–3 Mar., IEEE-NPSS).

    Article  ADS  Google Scholar 

  2. C. Kittel. Introduction to Solid State Physics, Wiley, New York, NY, 8th edition, 2005.

    Google Scholar 

  3. E. Snelling. Soft Ferrites: Properties and Applications, Butterworth, London, 2nd edition, 2000.

    Google Scholar 

  4. J. Smit and H. Wijn. Ferrites, Wiley, New York, NY, 1959.

    Google Scholar 

  5. R. Bozorth. Ferromagnetism, D. Van Nostrand Co. Inc., New Jersey, 1951.

    Google Scholar 

  6. F. Brockman. Dimensional Effects Resulting from High Dielectric Constant Found in a Ferromagnetic Ferrite. Phys. Rev., 77:85, 1950.

    Article  ADS  Google Scholar 

  7. E. Gorter. Magnetization in Ferrites: Saturation Magnetization of Ferrites with Spinel Structure. Nature, 165:798, 1950.

    Article  ADS  Google Scholar 

  8. S. Winter, R. Kuenning, and G. Berg. Pulse Properties of Large 50–50 Ni–Fe Tape Cores. IEEE Trans. Magn., 6:41–45, 1970.

    Article  ADS  Google Scholar 

  9. R. O’Handley, S. Murray, and S. Allen. Low-Field Magnetic Properties of Fe80B20 Glass. J. Appl. Phys., 47:4460, 1976.

    Google Scholar 

  10. F. Luborsky. Perspective on Applications of Amorphous Alloys in Magnetic Devices. In R. A. Levy and R. Hasegawa, editors, Amorphus Magnetism II, page 345, Plenum Press, New York, NY, 1977.

    Chapter  Google Scholar 

  11. A. Glaser and R. Tagirov. Amorphous Magnetic Materials. Acad. Sci. USSR Phys. Ser., 42–48:1600, 1978.

    Google Scholar 

  12. P. Chaudhari, B. Giessen, and D. Turnbull. Magnetic Glasses. Sci. Am., 242:98, 1980.

    Article  ADS  Google Scholar 

  13. L. Davis, N. de Cristofaro, and C. Smith. Technology of Metallic Glasses. In Proceedings of the Conference on Metallic Glasses: Science and Technology, page 125, Budapest, Hungary, 30 June–4 July 1980. Springer, The Netherlands.

    Google Scholar 

  14. C. Smith. Metallic Glasses for Magnetic Switches. In Proceedings of the 15th Power Modulator Symposium, page 22, Baltimore, MD, 14–16 June 1982.

    Google Scholar 

  15. C. Smith. Magnetic Shielding to Multi-Gigawatt Magnetic Switches: Ten Years of Amorphous Magnetic Applications. IEEE Trans. Magn., MAG-18:1376, 1982.

    Article  ADS  Google Scholar 

  16. C. Smith, B. Turman, and H. Harjes. Insulations for Metallic Glasses in Pulsed Power Systems. IEEE Trans. Electron Devices, 38:750, 1991.

    Article  ADS  Google Scholar 

  17. A. Molvik, W. Meier, R. Moir, and A. Faltens. Implications of New Induction Core Materials and Coatings for High Power Induction Accelerators. In Proceedings of the 1999 Particle Accelerator Conference, pages 1503–1505, New York, NY, 29 Mar.–2 Apr. 1999.

    Google Scholar 

  18. C. Smith, A. Faltens, and S. Rosenblum. Insulation for Metallic Glasses in Pulse Power Systems. J. Appl. Phys., 57:3508, 1985.

    Article  ADS  Google Scholar 

  19. R. Jones, A. Collins, and N. Cleaver. A Comparison of the Step \(\mathrm{d}B/\mathrm{d}t\) Pulse Magnetization Losses in Some Amorphous Ribbon and Conventional Toroids. IEEE Trans. Magn., MAG-17:2707, 1981.

    Article  ADS  Google Scholar 

  20. C. Smith and D. Nathasingh. Magnetic Properties of Metallic Glasses Under Fast Pulse Excitation. In Proceedings of the 16th Power Modulator Symposium, page 240, Arlington, VA, 18–20 June 1984. IEEE, New York, NY.

    Google Scholar 

  21. R. Jones. Step \(\mathrm{d}B/\mathrm{d}t\) Magnetization Losses in Toroidal Amorphous Ribbon and Polycrystalline Cores. IEEE Trans. Magn., MAG-18:1559, 1982.

    Article  ADS  Google Scholar 

  22. C. Smith and L. Barberi. Dynamic Magnetization of Metallic Glasses. In Proceedings of the 5th IEEE Pulse Power Conference, page 664, Arlington, VA, 10–12 June 1985. IEEE/NPSS.

    Google Scholar 

  23. Y. Yoshizawa, S. Oguma, and K. Yamauchi. New Fe-Based Soft Alloys Composed of Ultrafine Grain Structure. J. Appl. Phys., 64:6044, 1988.

    Article  ADS  Google Scholar 

  24. S. Nakajima, S. Arakawa, Y. Yamashita, and M. Shiho. Fe-Based Nanocrystalline FINEMET Cores for Induction Accelerators. Nucl. Inst. Meth. A, 331:5556, 1993.

    Article  Google Scholar 

  25. G. Mamaev, I. Bolotin, A. Ctcherbakov, and S. Mamaev. Fe-Based Nanocrystalline FINEMET Core for Induction Accelerators. In Proceedings of the 1997 Particle Accelerator Conference, page 1313, Vancouver, Canada, 12–16 May 1997.

    Google Scholar 

  26. S. Nakajima, S. Arakawa, Y. Yamashita, and M. Shiho. Fe-Based Nanocrystalline FINEMET Core for Induction Accelerators. Nucl. Inst. Meth. A, 331:318, 1993.

    Article  ADS  Google Scholar 

  27. S. Vonsovskii and E. Turov. Metallic Glasses and Amorphous Magnetism. Acad. Sci. USSR Phys. Ser., 42:1570, 1978.

    Google Scholar 

  28. A. Molvik and A. Faltens. Induction Core Alloys for Heavy-Ion Inertial Fusion-Energy Accelerators. Phys. Rev. Spec. Topics Accl. Beams, 5:080401, 2002.

    Article  ADS  Google Scholar 

  29. R. Hasegawa. Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors. NATO Sci. Ser., 184:189–198, 2006.

    Article  Google Scholar 

  30. R. Wood and R. Lathlaen. Amorphous Material Coatings. In Proceedings of the 12th Pulsed Power Conference, page 1313, Monterey, CA, 27–30 June 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis L. Reginato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reginato, L.L. (2011). Magnetic Materials. In: Takayama, K., Briggs, R. (eds) Induction Accelerators. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13917-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13917-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13916-1

  • Online ISBN: 978-3-642-13917-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics