Skip to main content

Chaos Synchronization Detector Combining Radial Basis Network for Estimation of Lower Limb Peripheral Vascular Occlusive Disease

  • Conference paper
Medical Biometrics (ICMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6165))

Included in the following conference series:

Abstract

Early detection of lower limb peripheral vascular occlusive disease (PVOD) is important to prevent patients from getting disabled claudication, ischemic rest pain and gangrene. This paper proposes a method for the estimation of lower limb PVOD using chaos synchronization (CS) detector with synchronous photoplethysmography (PPG) signal recorded from the big toes of both right and left feet for 21 subjects. The pulse transit time of PPG increases with diseased severity and the normalized amplitudes decreases in vascular disease. Synchronous PPG pulses acquired at the right and left big toes gradually become asynchronous as the disease progresses. A CS detector is used to track bilateral similarity or asymmetry of PPG signals, and to construct various butterfly motion patterns. Artificial neural network (ANN) was used as a classifier to classify and assess the PVOD severity. The results demonstrated that the proposed method has great efficiency and high accuracy in PVOD estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nitzan, M., Babchenko, A., Khonokh, B., Landau, D.: The variability of the photoplethysmographic signal- a potential method for the evaluation of the automatic nervous system. Physiological Measurement 19, 93–102 (1998)

    Article  Google Scholar 

  2. Nitzan, M., Babchenko, A., Khonokh, B.: Very low frequency variability in arterial blood pressure and blood volume pulse. Med. Biol. Eng. Comp. 37, 54–58 (1999)

    Article  Google Scholar 

  3. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement 28, R1–R39 (2007)

    Article  Google Scholar 

  4. Jago, J.R., Murray, A.: Repeatability of peripheral pulse measurement on ears, fingers, and toes using photoelectric plethysmography. Clin. Phys. Physiol. Meas. 9, 319–329 (1988)

    Article  Google Scholar 

  5. Allen, J., Murray, A.: Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs, and toes. IEE Proc. Meas. Technol. 147, 403–407 (2000)

    Article  Google Scholar 

  6. Nitzan, M., Khonokh, B., Slovik, Y.: The difference in pulse transit time to the toe and figure measured by photoplethysmography. Physiological Measurement 23, 85–93 (2002)

    Article  Google Scholar 

  7. Allen, J., Oates, C.P., Lees, T.A., Murray, A.: Photo-plethysmography detection of lower limb peripheral arterial occlusive disease: a comparison of pulse timing, amplitude and shape characteristics. Physiological Measurement 26, 811–821 (2005)

    Article  Google Scholar 

  8. Allen, J., Overbeck, K., Nath, A.F., Murray, A., Stansby, G.: A prospective comparison of bilateral photo-plethysmography versus the ankle-brachial pressure index for detecting and quantifying lower limb peripheral arterial disease. Journal of Vascular Surgery 47, 794–802 (2008)

    Article  Google Scholar 

  9. Chen, M., Zhou, D., Shang, Y.: A sliding mode observer based secure communication scheme. Chaos, Solitons & Fractals 25, 573–578 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lin, J.S., Yan, J.J., Liao, T.L.: Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity. Chaos, Solitons & Fractals 24, 371–381 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Wagner, C.D., Mrowka, R., Nafz, B., Persson, P.B.: Complexity and chaos in blood pressure after baroreceptor denervation of conscious dogs. Am. J. Physiol. 269, 1760–1766 (1996)

    Google Scholar 

  12. Yau, H.T., Kuo, C.L., Yan, J.J.: Fuzzy sliding mode control for a class of chaos synchronization with uncertainties. International Journal of Nonlinear Sciences and Numerical Simulation 7(3), 333–338 (2006)

    Google Scholar 

  13. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2(2), 302–309 (1991)

    Article  Google Scholar 

  14. Lin, C.H., Du, Y.C., Chen, T.: Adaptive wavelet network for multiple cardiac arrhythmias recognition. Expert Systems with Applications 34(4), 2601–2611 (2008)

    Article  Google Scholar 

  15. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  16. Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of the 1995 IEEE Int. Conf. Neural Networks, pp. 1942–1948. IEEE Press, New York (1995)

    Chapter  Google Scholar 

  18. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proc. of the 1997 IEEE Int. Conf. Evolutionary Computation, pp. 303–308. IEEE Press, New York (1997)

    Chapter  Google Scholar 

  19. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–255 (2004)

    Article  Google Scholar 

  20. Lin, Y.L., Chang, W.D., Hsieh, J.G.: A particle swarm optimization approach to nonlinear rational filter modeling. Expert System with Applications 34, 1194–1199 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, CH., Chen, YF., Du, YC., Wu, JX., Chen, T. (2010). Chaos Synchronization Detector Combining Radial Basis Network for Estimation of Lower Limb Peripheral Vascular Occlusive Disease. In: Zhang, D., Sonka, M. (eds) Medical Biometrics. ICMB 2010. Lecture Notes in Computer Science, vol 6165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13923-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13923-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13922-2

  • Online ISBN: 978-3-642-13923-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics