Skip to main content

An Automated Decision System for Landmine Detection and Classification Using Metal Detector Signals

  • Chapter
Innovations in Defence Support Systems – 1

Part of the book series: Studies in Computational Intelligence ((SCI,volume 304))

Abstract

An automated decision system for landmine detection and discrimination is implemented and evaluated using metal detector array data. The techniques utilised include: a gradient based peak isolation method, wavelet transforms, fuzzy ARTMAP neural networks, and the generic majority voting scheme. The features selected for representing the input data are composed of the morphological and wavelet based features of the target signature responses. Classification experiments are conducted in an attempt to discriminate target type and burial depth according to two different methodologies. The results obtained are promising, with the implemented decision system achieving high probabilities of detection with reasonable false alarm rates, and exceptional discrimination before and after decision fusion with relatively low classification errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanley, R.J., Theera-Umpon, N., Gader, P.D., Somanchi, S., Ho, D.K.: Detecting landmines using weighted density distribution function features. In: Signal Processing, Sensor Fusion, and Target Recognition X, SPIE, pp. 135–141 (2001)

    Google Scholar 

  2. Torrione, P., Remus, J., Collins, L.: Comparison of Pattern Recognition Approaches For Multisensor Detection and Discrimination of Anti-Personnel and Anti-Tank Landmines. In: Detection and Remediation Technologies for Mines and Minelike Targets XI, SPIE, pp. 62172S-11 (2006)

    Google Scholar 

  3. Marble, J.A., Yagle, A.E., Wakefield, G.H.: Physics derived basis pursuit in buried object identification using EMI sensors. In: Detection and Remediation Technologies for Mines and Minelike Targets X, SPIE, pp. 1151–1159 (2005)

    Google Scholar 

  4. Nelson, B.A., Schofield, D., Collins, L.M.: A comparison of neural networks and subspace detectors for the discrimination of low-metal-content landmines. In: Detection and Remediation Technologies for Mines and Minelike Targets VIII, SPIE, pp. 1046–1053 (2003)

    Google Scholar 

  5. Sezgin, M., Kaplan, G., Birim, M., Bahadirlar, Y.: Buried metalic object identification by EMI sensor. In: Detection and Remediation Technologies for Mines and Minelike Targets XII, SPIE, pp. 65530C-9 (2007)

    Google Scholar 

  6. Olson, T.E., Priebe, C.E., Olson, T.L.P.: Detection and Classification of Mines via Discriminant Features and Borrowed Strength. In: Detection and Remediation Technologies for Mines and Minelike Targets II, SPIE, pp. 345–352 (1997)

    Google Scholar 

  7. Gao, P., Collins, L.: Time-Domain Metal Detector and GPR Data Processing and Fusion for Landmine Detection. In: Detection and Remediation Technologies for Mines and Minelike Targets V, SPIE, pp. 847–852 (2000)

    Google Scholar 

  8. Davidson, N., Hawkins, M., Beech, R.: Testing of a locating discriminating metal detector for landmine detection. In: Detection and Remediation Technologies for Mines and Minelike Targets XI, SPIE, pp. 621704–8 (2006)

    Google Scholar 

  9. Collins, L., Tantum, S., Gao, P., Moulton, J., Makowsky, L., Reidy, D., Weaver, D.: Improving Detection of Low-Metallic Content Landmines Using EMI Data. In: Detection and Remediation Technologies for Mines and Minelike Targets V, SPIE, pp. 14–24 (2000)

    Google Scholar 

  10. Fails, E.B., Torrione, P.A., Scott Jr., W.R., Collins, L.M.: Performance of a Four Parameter Model for Modeling Landmine Signatures in Frequency Domain Wideband Electromagnetic Induction Detection Systems. In: Detection and Remediation Technologies for Mines and Minelike Targets XII, SPIE, pp. 65530–8 (2007)

    Google Scholar 

  11. Huang, H., Filipo, B.S., Norton, S., Won, I.J.: Identification of buried landmines using electromagnetic induction spectroscopy: evaluation of a blind test against ground truth. In: Detection and Remediation Technologies for Mines and Minelike Targets X, SPIE, pp. 233–241 (2005)

    Google Scholar 

  12. Brown, C.L., Zoubir, A.M., Chant, I.J., Abeynayake, C.: Landmine detection using single sensor metal detectors. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2002), vol. 4, pp. 3948–3951 (2002)

    Google Scholar 

  13. Abeynayake, C., Chant, I.J., Nash, G.: A modified Kalman target detection algorithm applied to metal detection. In: Detection and Remediation Technologies for Mines and Minelike Targets VII, SPIE, pp. 836–846 (2002)

    Google Scholar 

  14. Abeynayake, C., Chant, I.J., Nash, G.: Kalman detection of landmines in metal detector array data. In: Detection and Remediation Technologies for Mines and Minelike Targets VIII, SPIE, pp. 1243–1251 (2003)

    Google Scholar 

  15. Yee, M.L., Yee, A.A.: Algorithm for Automatic Mine Detection using a Vehicle-Mounted Metal Detector. In: Detection and Remediation Technologies for Mines and Minelike Targets VI, SPIE, pp. 108–119 (2001)

    Google Scholar 

  16. McGrath, R.: Landmines and unexploded ordnance: a resource book. Pluto Press, Sterling (2000)

    Google Scholar 

  17. MacDonald, J., Lockwood, J.R., McFee, J., Altshuler, T., Broach, T., Carin, L., Harmon, R., Rappaport, C., Scott, W., Weaver, R.: Alternatives for Landmine Detection. RAND, Santa Monica (2003)

    Google Scholar 

  18. Banks, E., Gravett, R.C.: Anti-personnel landmines: recognising & disarming, 1st edn. Brassey’s, London (1997)

    Google Scholar 

  19. Bruschini, C.: A Multidisciplinary Analysis of Frequency Domain Metal Detectors for Humanitarian Demining, Faculty of Applied Science. Doctor in Applied Sciences. Vrije Universiteit Brussel, Brussels (2002)

    Google Scholar 

  20. Stark, H.G.: Wavelets and Signal Processing: An Application-based Introduction. Springer, Heidelberg (2005)

    Google Scholar 

  21. Ubeyli, E.D.: Analysis of ECG Signals by Diverse and Composite Features. Journal of Electrical & Electronics Engineering, Istanbul University 7(2), 393–402 (2007)

    Google Scholar 

  22. Torrence, C., Compo, G.P.: A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society 79(1), 61 (1998)

    Article  Google Scholar 

  23. Mahmoodabadi, S.Z., Ahmadian, A., Abolhasani, M.D., Eslami, M., Bidgoli, J.H.: ECG Feature Extraction Based on Multiresolution Wavelet Transform. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 3902–3905 (2005)

    Google Scholar 

  24. Zhu, J., Zhang, X., Wang, Z., Wang, X.: Preprocessing and analysis of the ECG signals. In: Seventh International Symposium on Instrumentation and Control Technology: Sensors and Instruments, Computer Simulation, and Artificial Intelligence, SPIE, vol. 7127, 71272H-1-5 (2008)

    Google Scholar 

  25. Zhao, Q., Zhang, L.: ECG Feature Extraction and Classification Using Wavelet Transform and Support Vector Machines. In: International Conference on Neural Networks and Brain, ICNN&B 2005, pp. 1089–1092 (2005)

    Google Scholar 

  26. Tran, M.D.J., Abeynayake, C.: Evaluation of the Continuous Wavelet Transform for Feature Extraction of Metal Detector Signals in Automated Target Detection. In: New Advances in Intelligent Decision Technologies, pp. 245–253. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Tran, M.D.J., Lim, C.P., Abeynayake, C., Jain, L.C.: Feature extraction and classification of metal detector signals using the wavelet transform and the fuzzy ARTMAP neural network. Journal of Intelligent and Fuzzy Systems 21, 89–99 (2010)

    Google Scholar 

  28. Carpenter, G.A., Grossberg, S., Reynolds, J.H.: ARTMAP: Supervised Real-time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Network. Neural Networks 4, 565–588 (1991)

    Article  Google Scholar 

  29. Carpenter, G.A., Grossberg, S.: A Massively Parallel Architecture for a Self-Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics and Image Processing 37, 54–115 (1987)

    Article  Google Scholar 

  30. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps. IEEE Transactions on Neural Networks 3, 698–712 (1992)

    Article  Google Scholar 

  31. Palaniappan, R., Eswaran, C.: Using Genetic Algorithm to Select the Presentation Order of Training Patterns that Improves Simplified Fuzzy ARTMAP Classification Performance. Applied Soft Computing 9, 100–106 (2009)

    Article  Google Scholar 

  32. Vigdor, B., Lerner, B.: Accurate and Fast Off and Online Fuzzy ARTMAP-Based Image Classification with Application to Genetic Abnormality Diagnosis. IEEE Transactions on Neural Networks 17, 1288–1300 (2006)

    Article  Google Scholar 

  33. Tan, S.C., Lim, C.P., Rao, M.V.C.: A Hybrid Neural Network Model for Rule Generation and Its Application to Process Fault Detection and Diagnosis. Engineering Applications of Artificial Intelligence 20, 203–213 (2007)

    Article  Google Scholar 

  34. Shoaie, Z., Esmaeeli, M., Shouraki, S.B.: Combination of Multiple Classifiers With Fuzzy Integral Method for Classifying the EEG Signals in Brain-Computer Interface. In: Proceedings of International Conference on Biomedical and Pharmaceutical Engineering, pp. 157–161 (2006)

    Google Scholar 

  35. Ahmadzadeh, M.R., Petrou, M.: Use of Dempster-Shafer theory to Combine Classifiers Which Use Different Class Boundaries. Pattern Analysis and Applications 6, 41–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kording, K.P., Wolpert, D.M.: Bayesian Decision Theory in Sensorimotor Control. Trends in Cognitive Sciences 10, 319–326 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tran, M.DJ., Abeynayake, C., Jain, L.C., Lim, C.P. (2010). An Automated Decision System for Landmine Detection and Classification Using Metal Detector Signals. In: Finn, A., Jain, L.C. (eds) Innovations in Defence Support Systems – 1. Studies in Computational Intelligence, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14084-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14084-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14083-9

  • Online ISBN: 978-3-642-14084-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics