Skip to main content

Tell Me Where I Am So I Can Meet You Sooner

(Asynchronous Rendezvous with Location Information)

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

In this paper we study efficient rendezvous of two mobile agents moving asynchronously in the Euclidean 2d-space. Each agent has limited visibility, permitting it to see its neighborhood at unit range from its current location. Moreover, it is assumed that each agent knows its own initial position in the plane given by its coordinates. The agents, however, are not aware of each others position. The agents possess coherent compasses and the same unit of length, which permit them to consider their current positions within the same system of coordinates. The cost of the rendezvous algorithm is the sum of lengths of the trajectories of both agents. This cost is taken as the maximum over all possible asynchronous movements of the agents, controlled by the adversary.

We propose an algorithm that allows the agents to meet in a local neighborhood of diameter O(d), where d is the original distance between the agents. This seems rather surprising since each agent is unaware of the possible location of the other agent. In fact, the cost of our algorithm is O(d 2 + ε), for any constant ε> 0. This is almost optimal, since a lower bound of Ω(d 2) is straightforward. The only up to date paper [12] on asynchronous rendezvous of bounded-visibility agents in the plane provides the feasibility proof for rendezvous, proposing a solution exponential in the distance d and in the labels of the agents. In contrast, we show here that, when the identity of the agent is based solely on its original location, an almost optimal solution is possible.

An integral component of our solution is the construction of a novel type of non-simple space-filling curves that preserve locality. An infinite curve of this type visits specific grid points in the plane and provides a route that can be adopted by the mobile agents in search for one another. This new concept may also appear counter-intuitive in view of the result from [22] stating that for any simple space-filling curve, there always exists a pair of close points in the plane, such that their distance along the space-filling curve is arbitrarily large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Dolev, D., Malkhi, D.: LLS: a locality aware location service for mobile ad hoc networks. In: Proc. DIALM-POMC 2004, pp. 75–84 (2004)

    Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. Control and Optimization 33, 673–683 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alpern, S., Baston, V., Essegaier, S.: Rendezvous search on a graph. J. App. Probability 36, 223–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anderson, E., Lin, J., Morse, A.S.: The Multi-Agent Rendezvous Problem - The Asynchronous Case. In: 43rd IEEE Conf. on Decision and Control, pp. 1926–1931 (2004)

    Google Scholar 

  5. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable players. SIAM J. on Control and Optimization 33, 1637–1642 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  9. Buchin, K.: Constructing Delaunay Triangulations along Space-Filling Curves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 119–130. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Asynchronous deterministic rendezvous in bounded terrains. In: SIROCCO (2010)

    Google Scholar 

  12. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: Proc. of SODA 2010, pp. 22–30 (2010)

    Google Scholar 

  13. Czyzowicz, J., Kosowski, A., Pelc, A.: How to Meet when you Forget: Log-space Rendezvous in Arbitrary Graphs. In: Proc. of 29th Ann. Symp. on Principles of Distributed Computing, PODC 2010 (to appear, 2010)

    Google Scholar 

  14. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Th. Comp. Sc. 355, 315–326 (2006)

    Article  MATH  Google Scholar 

  15. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in UDG radio networks with unknown topology. Distributed Computing 21(5), 331–351 (2009)

    Article  Google Scholar 

  17. Emek, Y., Kantor, E., Peleg, D.: On the effect of the deployment setting on broadcasting in Euclidean radio networks. In: Proc. PODC 2008, pp. 223–232 (2008)

    Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)

    Article  MATH  Google Scholar 

  21. Ganguli, A., Cortés, J., Bullo, F.: Multirobot rendezvous with visibility sensors in nonconvex environments. IEEE Transactions on Robotics 25(2), 340–352 (2009)

    Article  Google Scholar 

  22. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Transactions on Image Processing 5(5), 794–797 (1996)

    Article  Google Scholar 

  23. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Th. Comp. Science 399, 141–156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kozma, G., Lotker, Z., Sharir, M., Stupp, G.: Geometrically aware communication in random wireless networks. In: Proc. PODC 2004, pp. 310–319 (2004)

    Google Scholar 

  25. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: theory and practice. In: Proc. PODC 2003, pp. 63–72 (2003)

    Google Scholar 

  26. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Transactions on Knowledge Data Engineering 14(1), 124–141 (2001)

    Article  Google Scholar 

  27. Paterson, M.S., Yao, F.F.: Efficient binary space partitions for hidden-surface removal and solid modeling. Discr. and Comp. Geom. 5(5), 485–503 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Samet, H.: The quadtree and related hierarchical data structures. Surveys 16(2), 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  29. Xu, B., Chen, D.Z.: Density-Based Data Clustering Algorithms for Lower Dimensions Using Space-Filling Curves. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 997–1005. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Yamashita, M., Kameda, T.: Computing on Anonymous Networks: Part I-Characterizing the Solvable Cases. IEEE Trans. Parallel Dist. Syst. 7, 69–89 (1996)

    Article  Google Scholar 

  31. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A. (2010). Tell Me Where I Am So I Can Meet You Sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics