Skip to main content

Abstract

In this chapter, we give a brief introduction to learning to rank for information retrieval. Specifically, we first introduce the ranking problem by taking document retrieval as an example. Second, conventional ranking models proposed in the literature of information retrieval are reviewed, and widely used evaluation measures for ranking are mentioned. Third, the motivation of using machine learning technology to solve the problem of ranking is given, and existing learning-to-rank algorithms are categorized and briefly depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    http://www.cs.uiowa.edu/~asignori/web-size/.

  2. 2.

    http://www.iht.com/articles/2005/08/15/business/web.php.

  3. 3.

    http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.

  4. 4.

    http://therawfeed.com/.

  5. 5.

    http://research.microsoft.com/~LETOR/.

  6. 6.

    http://glinden.blogspot.com/2005/06/msn-search-and-learning-to-rank.html, http://www.ysearchblog.com/2008/07/09/boss-the-next-step-in-our-open-search-ecosystem/.

  7. 7.

    Note that there are many different definitions of TF and IDF in the literature. Some are purely based on the frequency and the others include smoothing or normalization [70]. Here we just give some simple examples to illustrate the main idea.

  8. 8.

    The name of the actual model is BM25. In the right context, however, it is usually referred to as “OKapi BM25”, since the OKapi system was the first system to implement this model.

  9. 9.

    If there are web pages without any inlinks (which is usually referred to as dangling nodes in the graph), some additional heuristics is needed to avoid rank leak.

  10. 10.

    http://trec.nist.gov/.

  11. 11.

    This kind of judgment can also be mined from click-through logs of search engines [41, 42, 63].

  12. 12.

    Note that this is not a complete introduction of evaluation measures for information retrieval. There are several other measures proposed in the literature, some of which even consider the novelty and diversity in the search results in addition to the relevance. One may want to refer to [2, 17, 56, 91] for more information.

  13. 13.

    For a more comprehensive introduction to the machine learning literature, please refer to [54].

  14. 14.

    In this book, when we mention the output space, we mainly refer to the second type.

  15. 15.

    In the literature of machine learning, there is a topic named label ranking. It predicts the ranking of multiple class labels for an individual document, but not the ranking of documents. In this regard, it is largely different from the task of ranking for information retrieval.

  16. 16.

    We will make further discussions on the relationship between relevance feedback and learning to rank in Chap. 2.

  17. 17.

    Note that, in this book, when we refer to a document, we will not use d any longer. Instead, we will directly use its feature representation x. Furthermore, since our discussions will focus more on the learning process, we will always assume the features are pre-specified, and will not purposely discuss how to extract them.

  18. 18.

    See http://blog.searchenginewatch.com/050622-082709, http://blogs.msdn.com/msnsearch/archive/2005/06/21/431288.aspx, and http://glinden.blogspot.com/2005/06/msn-search-and-learning-to-rank.html.

  19. 19.

    Please distinguish the judgment for evaluation and the judgment for constructing the training set, although the process may be very similar.

  20. 20.

    Hereafter, when we mention the ground-truth labels in the remainder of the book, we will mainly refer to the ground-truth labels in the training set, although we assume every document will have its intrinsic label, no matter whether it is judged or not.

  21. 21.

    Similar treatment can be found in the definition of Rank Correlation in Sect. 1.2.2.

References

  1. Amento, B., Terveen, L., Hill, W.: Does authority mean quality? Predicting expert quality ratings of web documents. In: Proceedings of the 23th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2000), pp. 296–303 (2000)

    Chapter  Google Scholar 

  2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)

    Google Scholar 

  3. Banerjee, S., Chakrabarti, S., Ramakrishnan, G.: Learning to rank for quantity consensus queries. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009), pp. 243–250 (2009)

    Google Scholar 

  4. Bartell, B., Cottrell, G.W., Belew, R.: Learning to retrieve information. In: Proceedings of Swedish Conference on Connectionism (SCC 1995) (1995)

    Google Scholar 

  5. Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Transactions on Internet Technologies 5(1), 92–128 (2005)

    Article  Google Scholar 

  6. Boldi, P., Santini, M., Vigna, S.: Pagerank as a function of the damping factor. In: Proceedings of the 14th International Conference on World Wide Web (WWW 2005), pp. 557–566. ACM, New York (2005)

    Chapter  Google Scholar 

  7. Burges, C.J., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost functions. In: Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 395–402 (2007)

    Google Scholar 

  8. Burges, C.J., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), pp. 89–96 (2005)

    Chapter  Google Scholar 

  9. Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., Hon, H.W.: Adapting ranking SVM to document retrieval. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2006), pp. 186–193 (2006)

    Chapter  Google Scholar 

  10. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning (ICML 2007), pp. 129–136 (2007)

    Chapter  Google Scholar 

  11. Chakrabarti, S., Khanna, R., Sawant, U., Bhattacharyya, C.: Structured learning for non-smooth ranking losses. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2008), pp. 88–96 (2008)

    Chapter  Google Scholar 

  12. Chapelle, O., Wu, M.: Gradient descent optimization of smoothed information retrieval metrics. Information Retrieval Journal. Special Issue on Learning to Rank 13(3), doi:10.1007/s10791-009-9110-3 (2010).

  13. Chu, W., Ghahramani, Z.: Gaussian processes for ordinal regression. Journal of Machine Learning Research 6, 1019–1041 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Chu, W., Ghahramani, Z.: Preference learning with Gaussian processes. In: Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), pp. 137–144 (2005)

    Chapter  Google Scholar 

  15. Chu, W., Keerthi, S.S.: New approaches to support vector ordinal regression. In: Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), pp. 145–152 (2005)

    Chapter  Google Scholar 

  16. Ciaramita, M., Murdock, V., Plachouras, V.: Online learning from click data for sponsored search. In: Proceeding of the 17th International Conference on World Wide Web (WWW 2008), pp. 227–236 (2008)

    Chapter  Google Scholar 

  17. Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Buttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2008), pp. 659–666 (2008)

    Chapter  Google Scholar 

  18. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: Advances in Neural Information Processing Systems 10 (NIPS 1997), vol. 10, pp. 243–270 (1998)

    Google Scholar 

  19. Cooper, W.S., Gey, F.C., Dabney, D.P.: Probabilistic retrieval based on staged logistic regression. In: Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1992), pp. 198–210 (1992)

    Chapter  Google Scholar 

  20. Cossock, D., Zhang, T.: Subset ranking using regression. In: Proceedings of the 19th Annual Conference on Learning Theory (COLT 2006), pp. 605–619 (2006)

    Google Scholar 

  21. Crammer, K., Singer, Y.: Pranking with ranking. In: Advances in Neural Information Processing Systems 14 (NIPS 2001), pp. 641–647 (2002)

    Google Scholar 

  22. Craswell, N., Hawking, D., Wilkinson, R., Wu, M.: Overview of the trec 2003 web track. In: Proceedings of the 12th Text Retrieval Conference (TREC 2003), pp. 78–92 (2003)

    Google Scholar 

  23. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)

    Article  Google Scholar 

  24. Drucker, H., Shahrary, B., Gibbon, D.C.: Support vector machines: relevance feedback and information retrieval. Information Processing and Management 38(3), 305–323 (2002)

    Article  MATH  Google Scholar 

  25. Freund, Y., Iyer, R., Schapire, R., Singer, Y.: An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)

    MathSciNet  Google Scholar 

  26. Fuhr, N.: Optimum polynomial retrieval functions based on the probability ranking principle. ACM Transactions on Information Systems 7(3), 183–204 (1989)

    Article  Google Scholar 

  27. Gao, J., Qi, H., Xia, X., Nie, J.: Linear discriminant model for information retrieval. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2005), pp. 290–297 (2005)

    Chapter  Google Scholar 

  28. Gey, F.C.: Inferring probability of relevance using the method of logistic regression. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1994), pp. 222–231 (1994)

    Google Scholar 

  29. Gyongyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank. In: Proceedings of the 30th International Conference on Very Large Data Bases (VLDB 2004), pp. 576–587 (2004). VLDB Endowment

    Google Scholar 

  30. Harrington, E.F.: Online ranking/collaborative filtering using the perceptron algorithm. In: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), vol. 20(1), pp. 250–257 (2003)

    Google Scholar 

  31. Harrington, E.F.: Online ranking/collaborative filtering using the perceptron algorithm. In: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), pp. 250–257 (2003)

    Google Scholar 

  32. Haveliwala, T.: Efficient computation of pageRank. Tech. rep. 1999-31, Stanford University (1999)

    Google Scholar 

  33. Haveliwala, T., Kamvar, S.: The second eigenvalue of the Google matrix. Tech. rep., Stanford University (2003)

    Google Scholar 

  34. Haveliwala, T., Kamvar, S., Jeh, G.: An analytical comparison of approaches to personalizing pagerank. Tech. rep., Stanford University (2003)

    Google Scholar 

  35. Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of the 11th International Conference on World Wide Web (WWW 2002), Honolulu, Hawaii, pp. 517–526 (2002)

    Google Scholar 

  36. He, B., Ounis, I.: A study of parameter tuning for term frequency normalization. In: Proceedings of the 12th International Conference on Information and Knowledge Management (CIKM 2003), pp. 10–16 (2003)

    Google Scholar 

  37. Herbrich, R., Obermayer, K., Graepel, T.: Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, pp. 115–132 (2000)

    Google Scholar 

  38. Huang, J., Frey, B.: Structured ranking learning using cumulative distribution networks. In: Advances in Neural Information Processing Systems 21 (NIPS 2008) (2009)

    Google Scholar 

  39. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2000), pp. 41–48 (2000)

    Chapter  Google Scholar 

  40. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems 20(4), 422–446 (2002)

    Article  Google Scholar 

  41. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2002), pp. 133–142 (2002)

    Google Scholar 

  42. Joachims, T.: Evaluating retrieval performance using clickthrough data. In: Text Mining, pp. 79–96 (2003)

    Google Scholar 

  43. Kendall, M.: Rank Correlation Methods. Oxford University Press, London (1990)

    MATH  Google Scholar 

  44. Kramer, S., Widmer, G., Pfahringer, B., Groeve, M.D.: Prediction of ordinal classes using regression trees. Funfamenta Informaticae 34, 1–15 (2000)

    Google Scholar 

  45. Lafferty, J., Zhai, C.: Document language models, query models and risk minimization for information retrieval. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2001), pp. 111–119 (2001)

    Chapter  Google Scholar 

  46. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Mathematics 1(3), 335–400 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, P., Burges, C., Wu, Q.: McRank: Learning to rank using multiple classification and gradient boosting. In: Advances in Neural Information Processing Systems 20 (NIPS 2007), pp. 845–852 (2008)

    Google Scholar 

  48. Liu, T.Y., Xu, J., Qin, T., Xiong, W.Y., Li, H.: LETOR: Benchmark dataset for research on learning to rank for information retrieval. In: SIGIR 2007 Workshop on Learning to Rank for Information Retrieval (LR4IR 2007) (2007)

    Google Scholar 

  49. Mao, J.: Machine learning in online advertising. In: Proceedings of the 11th International Conference on Enterprise Information Systems (ICEIS 2009), p. 21 (2009)

    Google Scholar 

  50. Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information retrieval. Journal of the ACM 7(3), 216–244 (1960)

    Article  Google Scholar 

  51. McSherry, F.: A uniform approach to accelerated pagerank computation. In: Proceedings of the 14th International Conference on World Wide Web (WWW 2005), pp. 575–582. ACM, New York (2005)

    Chapter  Google Scholar 

  52. Metzler, D.A., Croft, W.B.: A Markov random field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2005), pp. 472–479 (2005)

    Chapter  Google Scholar 

  53. Metzler, D.A., Kanungo, T.: Machine learned sentence selection strategies for query-biased summarization. In: SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008) (2008)

    Google Scholar 

  54. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  55. Nallapati, R.: Discriminative models for information retrieval. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2004), pp. 64–71 (2004)

    Chapter  Google Scholar 

  56. Pavlu, V.: Large scale ir evaluation. PhD thesis, Northeastern University, College of Computer and Information Science (2008)

    Google Scholar 

  57. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1998), pp. 275–281 (1998)

    Chapter  Google Scholar 

  58. Qin, T., Liu, T.Y., Lai, W., Zhang, X.D., Wang, D.S., Li, H.: Ranking with multiple hyperplanes. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), pp. 279–286 (2007)

    Chapter  Google Scholar 

  59. Qin, T., Liu, T.Y., Li, H.: A general approximation framework for direct optimization of information retrieval measures. Information Retrieval 13(4), 375–397 (2009)

    Article  Google Scholar 

  60. Qin, T., Liu, T.Y., Zhang, X.D., Chen, Z., Ma, W.Y.: A study of relevance propagation for web search. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2005), pp. 408–415 (2005)

    Chapter  Google Scholar 

  61. Qin, T., Liu, T.Y., Zhang, X.D., Wang, D., Li, H.: Learning to rank relational objects and its application to web search. In: Proceedings of the 17th International Conference on World Wide Web (WWW 2008), pp. 407–416 (2008)

    Chapter  Google Scholar 

  62. Qin, T., Zhang, X.D., Tsai, M.F., Wang, D.S., Liu, T.Y., Li, H.: Query-level loss functions for information retrieval. Information Processing and Management 44(2), 838–855 (2008)

    Article  Google Scholar 

  63. Radlinski, F., Joachims, T.: Query chain: learning to rank from implicit feedback. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2005), pp. 239–248 (2005)

    Google Scholar 

  64. Richardson, M., Domingos, P.: The intelligent surfer: probabilistic combination of link and content information in pagerank. In: Advances in Neural Information Processing Systems 14 (NIPS 2001), pp. 1441–1448. MIT Press, Cambridge (2002)

    Google Scholar 

  65. Robertson, S.E.: Overview of the okapi projects. Journal of Documentation 53(1), 3–7 (1997)

    Article  Google Scholar 

  66. Rochhio, J.J.: Relevance feedback in information retrieval. In: The SMART Retrieval System—Experiments in Automatic Document Processing, pp. 313–323 (1971)

    Google Scholar 

  67. Shakery, A., Zhai, C.: A probabilistic relevance propagation model for hypertext retrieval. In: Proceedings of the 15th International Conference on Information and Knowledge Management (CIKM 2006), pp. 550–558 (2006)

    Google Scholar 

  68. Shashua, A., Levin, A.: Ranking with large margin principles: two approaches. In: Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 937–944 (2003)

    Google Scholar 

  69. Shen, L., Joshi, A.K.: Ranking and reranking with perceptron. Journal of Machine Learning 60(1–3), 73–96 (2005)

    Article  Google Scholar 

  70. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Engineering Bulletin 24(4), 35–43 (2001)

    Google Scholar 

  71. Surdeanu, M., Ciaramita, M., Zaragoza, H.: Learning to rank answers on large online qa collections. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT 2008), pp. 719–727 (2008)

    Google Scholar 

  72. Talyor, M., Guiver, J., et al.: Softrank: optimising non-smooth rank metrics. In: Proceedings of the 1st International Conference on Web Search and Web Data Mining (WSDM 2008), pp. 77–86 (2008)

    Chapter  Google Scholar 

  73. Tao, T., Zhai, C.: Regularized estimation of mixture models for robust pseudo-relevance feedback. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2006), pp. 162–169 (2006)

    Chapter  Google Scholar 

  74. Tao, T., Zhai, C.: An exploration of proximity measures in information retrieval. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), pp. 295–302 (2007)

    Chapter  Google Scholar 

  75. Taylor, M., Zaragoza, H., Craswell, N., Robertson, S., Burges, C.J.: Optimisation methods for ranking functions with multiple parameters. In: Proceedings of the 15th International Conference on Information and Knowledge Management (CIKM 2006), pp. 585–593 (2006)

    Google Scholar 

  76. Tsai, M.F., Liu, T.Y., Qin, T., Chen, H.H., Ma, W.Y.: Frank: a ranking method with fidelity loss. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), pp. 383–390 (2007)

    Chapter  Google Scholar 

  77. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  78. Veloso, A., Almeida, H.M., Goçalves, M., Meira, W. Jr.: Learning to rank at query-time using association rules. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2008), pp. 267–274 (2008)

    Chapter  Google Scholar 

  79. Verberne, S., Halteren, H.V., Theijssen, D., Raaijmakers, S., Boves, L.: Learning to rank qa data. In: SIGIR 2009 Workshop on Learning to Rank for Information Retrieval (LR4IR 2009) (2009)

    Google Scholar 

  80. Volkovs, M.N., Zemel, R.S.: Boltzrank: learning to maximize expected ranking gain. In: Proceedings of the 26th International Conference on Machine Learning (ICML 2009), pp. 1089–1096 (2009)

    Google Scholar 

  81. Voorhees, E.M.: The philosophy of information retrieval evaluation. In: Lecture Notes in Computer Science (CLEF 2001), pp. 355–370 (2001)

    Google Scholar 

  82. Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to rank—theorem and algorithm. In: Proceedings of the 25th International Conference on Machine Learning (ICML 2008), pp. 1192–1199 (2008)

    Chapter  Google Scholar 

  83. Xu, J., Cao, Y., Li, H., Zhao, M.: Ranking definitions with supervised learning methods. In: Proceedings of the 14th International Conference on World Wide Web (WWW 2005), pp. 811–819. ACM Press, New York (2005)

    Chapter  Google Scholar 

  84. Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), pp. 391–398 (2007)

    Chapter  Google Scholar 

  85. Xu, J., Liu, T.Y., Lu, M., Li, H., Ma, W.Y.: Directly optimizing IR evaluation measures in learning to rank. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2008), pp. 107–114 (2008)

    Chapter  Google Scholar 

  86. Yang, Y.H., Hsu, W.H.: Video search reranking via online ordinal reranking. In: Proceedings of IEEE 2008 International Conference on Multimedia and Expo (ICME 2008), pp. 285–288 (2008)

    Chapter  Google Scholar 

  87. Yang, Y.H., Wu, P.T., Lee, C.W., Lin, K.H., Hsu, W.H., Chen, H.H.: Contextseer: context search and recommendation at query time for shared consumer photos. In: Proceedings of the 16th International Conference on Multimedia (MM 2008), pp. 199–208 (2008)

    Chapter  Google Scholar 

  88. Yeh, J.Y., Lin, J.Y., et al.: Learning to rank for information retrieval using genetic programming. In: SIGIR 2007 Workshop on Learning to Rank for Information Retrieval (LR4IR 2007) (2007)

    Google Scholar 

  89. Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for optimizing average precision. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), pp. 271–278 (2007)

    Chapter  Google Scholar 

  90. Zhai, C.: Statistical language models for information retrieval: a critical review. Foundations and Trends in Information Retrieval 2(3), 137–215 (2008)

    Article  Google Scholar 

  91. Zhai, C., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2003), pp. 10–17 (2003)

    Google Scholar 

  92. Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to information retrieval. In: Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM 2001), pp. 403–410 (2001)

    Google Scholar 

  93. Zhai, C., Lafferty, J.: A risk minimization framework for information retrieval. Information Processing and Management 42(1), 31–55 (2006)

    Article  MATH  Google Scholar 

  94. Zheng, Z., Chen, K., Sun, G., Zha, H.: A regression framework for learning ranking functions using relative relevance judgments. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2007), pp. 287–294 (2007)

    Chapter  Google Scholar 

  95. Zheng, Z., Zha, H., Sun, G.: Query-level learning to rank using isotonic regression. In: SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008) (2008)

    Google Scholar 

  96. Zoeter, O., Taylor, M., Snelson, E., Guiver, J., Craswell, N., Szummer, M.: A decision theoretic framework for ranking using implicit feedback. In: SIGIR 2008 Workshop on Learning to Rank for Information Retrieval (LR4IR 2008) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Yan Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, TY. (2011). Introduction. In: Learning to Rank for Information Retrieval. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14267-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14267-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14266-6

  • Online ISBN: 978-3-642-14267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics